Small Arms Review
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Events
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Events
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal


No Result
View All Result
Small Arms Review


No Result
View All Result
Home Articles

FUTURE WARRIOR: BATTEFIELDS BEYOND SCIENCE FICTION

by SAR Staff
July 1, 2004
in Articles, Articles by Issue, Catalogs, Gear, Guns & Parts, ID Guides, Search by Issue, V7N10 (Jul 2004), Volume 7
FUTURE WARRIOR: BATTEFIELDS BEYOND SCIENCE FICTION
Share on FacebookShare on Twitter

by Robert Bruce

Small Arms Review presents the final installment of a three-part series on the evolution of the American infantry soldier in the 21st Century.

“My suit has the ability to stop a rifle bullet. It is made of a material that is as flexible as my football jersey but gets hard as steel when a bullet or knife is pushed into it. The material has some kind of chemical in it that lets fresh air pass through it but stops and destroys chemical warfare agents. If I do get injured, the suit automatically inflates over the wound, stopping the bleeding and applying medicine to the injury until our medic can come help me.” Letter from a soldier, 30 October 2017, (US Army OFW Panel, December 2001)


Our journey through time from Land Warrior to Objective Force Warrior has now arrived at the battlefield of the year 2020. Weapons and equipment used by all combatants – friend and foe – are the result of more than two decades of accelerated scientific development, with capabilities previously only imagined by Hollywood special effects wizards.

A representation of what Future Warrior may look like in the year 2020, outfitted from head to toe in the most technologically advanced gear that the free world’s best minds can provide. Credit: Sarah Underhill, US Army Soldier Biological Chemical Command


Everything is lighter, faster, smarter, and more lethal, including tiny computers that read our minds and swarms of self-programming robots of all sizes and shapes that scout, report, organize, and kill with steerable munitions and energy beams. Self-replicating organisms, and nano-robots far smaller than the period at the end of this sentence, will attack and destroy specific targets including the human nervous system and enemy computer components. How the hell did this happen?

Army After Next

While untold numbers of senior military leaders since the end of World War II have applied their expertise and imagination to projecting warfare into the foreseeable future, the process wasn’t well organized until 1996 when the US Army’s Training and Doctrine Command (TRADOC) created the “Army After Next” working group.

Recommendations from this small, multi-service core of officers set in motion an enormous and wide reaching endeavor that has spread to universities, government and industry laboratories, think tanks, and even back to Hollywood. Hundreds of millions of dollars have already been spent and billions more will follow in financing new and improved ways to keep America and her allies at the cutting edge of combat.

Space-based weapons will take on increased importance in coming decades for use against both space and surface targets. This is a conceptual illustration of Raytheon’s orbiting Exoatmospheric Kill Vehicle in development for the National Missile Defense Program. EKV is a high power directed energy weapon that will destroy enemy ICBM warheads before they can reenter the earth’s atmosphere. Credit: Raytheon

DARPA Does it All

A bewildering array of players are in this ultimate-stakes game, including big names like the government’s Department of Energy, defense mega-contractors like General Dynamics, and US Army Soldier and Biological Chemical Command. But all roads for research and development fan out from DARPA (Defense Advanced Research Projects Agency). This is a clearinghouse for military science with eight major technical offices that are each responsible for a mind-numbing list of programs.

Among these we find a full range from what looks like the wildest sci-fi speculation to get-it-now hardware for today’s fighters up to their eyeballs in the War on Terror. Just one example of the first category can be seen under the listings for Defense Science Office as “Brain Machine Interfaces.” The official description explains that this is intended to augment human performance by accessing brainwaves in real time so that computers can instantly know what we need them to do. And do it.

Future Warfare is depicted as a fortune-teller’s crystal ball in this US military graphic. Current vehicles and aircraft will have reached the end of their operational life before 2020, necessitating replacement by more modern and capable platforms. Credit: Joint Vision 2020

The second type is well represented by “Babylon” from the Information Awareness Office. Aptly named with possible inspiration from the biblical story of the Tower of Babel, its prototype was fielded in Afghanistan and future versions will give our soldiers a hand-held two-way translator that allows instantaneous communication between those who speak any of a dozen or more languages. Say “Surrender or die!” and the bad guys get the message right away.

DARPA’s website (www.darpa.mil) offers all sorts of handy information for outsiders who may want to help with or hurt the progress toward Future Warrior. Individual inventors, corporate funding sniffers and hostile intelligence agencies (like the Chinese, Russians and French) can follow various links to those agencies, firms and universities that are being highly paid to participate.

Much of the work at the Army Research Office is directed toward arming and equipping Future Warrior. Credit: Army Research Office

Gray Goo and Plastic Muscles

“Scientists believe that nanotechnology will soon give humans the ability to move and combine individual atoms and molecules into microscopically tiny mechanical, electrical, and biological ‘machines’….” (Center for Technology and National Security policy.)

The Institute for Soldier Nanotechnologies at MIT is a particularly interesting side trip from the DARPA superhighway, recently awarded a cool $50 million in American taxpayer dollars (plus $40 million more from defense industry sources) to explore military applications in all branches of the rapidly growing scientific field that includes all things measured in billionths of a meter!

MARS (Mobile Autonomous Robot Software), a DARPA Information Processing Technology Office program, seeks to develop software technologies needed to program “autonomous operation of singly autonomous, mobile robots in partially known, changing, and unpredictable environments.” More simply put, it will help smart and independent robotic platforms perform effectively in combat. Credit: Defense Advanced Research Projects Agency

Seven research teams are at work at ISN and its industry partners DuPont and Raytheon to dramatically enhance Objective Force Warrior and Future Warrior’s protection, performance enhancement, injury prevention, and automatic wound treatment. For example, tomorrow’s uniform is likely to be spun from a variety of “intelligent polymer threads” that combine vastly superior body armor, instantly changeable camouflage patterns, and artificial muscles. This last has already been demonstrated in performance of a plastic “molecular muscle” that expands and contracts when an electrical charge is applied.

At the same time as this good stuff is being developed, some insiders are raising dire warnings about the “gray goo problem” where smart nano-robots themselves start building even smarter nano-robots and these begin to behave in decidedly antisocial ways toward humans and other machines. This nightmare scenario of uncontrollable, unstoppable replication of hostile biomechanical entities – particularly in the hands of an enemy state or fanatic doomsday terrorists – deserves serious consideration.

Flying Insect Robots carrying subminiature television cameras are designed to fool the enemy when dispatched into their midst for reconnaissance duties. These are actual working prototypes from the BEAM program (biology, electronics, aesthetics, and mechanics). Credit: Los Alamos National Laboratory

Future Warriors and Warriorettes

Future Warrior 2025 CIE Concepts is the official US Army information sheet from Soldier and Biological Chemical Command, providing a fascinating insight into how a broad framework for this enormous undertaking has been provided for the largest number of different contributors. It is reproduced here exactly as written so that our readers can enjoy both its flavor and substance:

The X-47A Pegasus is an experimental unmanned air vehicle designed and built by Northrop Grumman’s Integrated Systems sector. This UCAV-N robotic fighter plane is intended for launch and recovery from US Navy aircraft carriers at sea. Credit: Northrop Grumman

Overview

The future is always uncertain, but by applying logic and imagination to current situations and technologies, a conceptual representation of how soldiers might be equipped in the distant future has been developed. This conceptualization is not US Army doctrine, nor is it intended to answer every question raised by the Army After Next. It is intended to raise questions, stir imaginations, and start dialogue about how best to serve and equip our war fighters in the near future.


Description

The Future Warrior 2025 will be a completely integrated system, which will be tailored to each individual, from an electro-spun Combat Uniform to a biomechanically engineered Headgear Subsystem. There are six major subsystems included in the concept:

  • The Headgear Subsystem, which we describe as Information Central, is the situational awareness hub of the system. It would include Integrated tactical processing (e.g., maps, routes, SA data); 180º emissive visor display; High data rate (GB/sec) communications; Microelectronic/optics combat sensor suite that provides 360º situational awareness; Integrated small arms protection in selected locations.
  • The Combat Uniform Subsystem, which we describe as Survivability Central, contains three layers: the Protective Outer Layer, the Power Centric Layer, and the Life Critical Layer.
  • The Weapon Subsystem, Lethality Central, permits direct and indirect target engagements. The weapon weighs 5 pounds, and combines five tubes of soft-launched, 15mm intelligent seeker munitions and one tube of stacked 4.6mm kinetic energy projectiles for close quarter combat.
  • The Warfighter Physiological Status Monitor (WPSM) Subsystem collects information on the vital signs (core temperature, skin temperature, heart rate, blood pressure) hydration state, stress level (mouth sensors), thermal state, sleep status, and workload capacity of the warrior. The WPSM can also recommend remote triage care needed.
  • The Micro-climate Conditioning Subsystem, a network of narrow tubing built into the material of the Life Critical Layer that provides 100 watts of heating or cooling to the warrior.
  • The Power Subsystem, Duration Central, consists of a 2- to 20-watt Micro Turbine fueled by a liquid hydrocarbon. Ten ounces of fuel, contained in a lightweight plug-in cartridge, powers the soldier for up to six days. Polymeric nanofiber battery patches embedded in the headgear and weapon provide backup power for three hours.
DARPA’s Loki System, under the Advanced Technology Office, is envisioned as a fast and stealthy underwater fighting platform for future operations using advanced sensors, guidance, navigation, propulsion, and control technologies such as those being examined and employed at Space and Naval Warfare Systems Center. Credit: Defense Advanced Research Projects Agency


Directed Energy Weaponry

Directed Energy Weapons (DEW) is the catchall name for everything electrical and electronic that can be generated and beamed in the general or specific direction of the enemy. This includes such well-known things as lasers and microwaves, but also far spookier things like acoustic, electromagnetic, and psychotronic weapons. All of these have perfectly legitimate roles to play in warfare and under the right circumstances even enjoy the politically correct designation of “non-lethal” when used sparingly by the good guys to deal with hostile humans and their machines.

GIs who are properly DEW-equipped can call on a variety of solutions such as Office Of Naval Research’s Neuro-Muscular Disrupter to discourage mob leaders and instigators, causing them to suddenly lose control of their bowels and their balance – literally defecating and falling in it. The rest of the crowd can be strongly encouraged to leave immediately by application of the Air Force Research Lab’s Active Denial Technology, focusing millimeter-wave electromagnetic energy in very short bursts, causing the sensation of burning skin without actual injury. Then, for good measure, a HERF (High Energy Radio Frequency) gun could be fired at the video cameras to fry their circuitry.

On the other hand, there are many nightmare scenarios in the world of DEWs that are already in the hands of the bad guys. Nazi experimentation with acoustic weapons in the desperate closing months of World War II was carried forward by Stalin’s scientists who are also said to have developed various psychotronic devices such as voice-to-skull transmitters. These are said to have found very practical uses in the inhuman Soviet dictatorship, including torture and torment of jailed dissidents who, hearing strange voices in their brains, believed they were going insane.

Future Warrior will need to have the option of using all these forms of directed energy as well as having full spectrum protection against them when employed by our numerous enemies.

“Soviet Mobile Laser in Afghanistan,” a painting by Edward L. Cooper, 1985. Laser weapons have already been used in combat by Soviet forces during their ill-fated, Vietnam-like intervention back in the 1980’s. The genie is out of the bottle and future conflicts will undoubtedly include these and other directed energy weapons. Credit: Defense Intelligence Agency

Robots Everywhere!

“The future battlefield will require an unprecedented level of automation in which soldier-operated, autonomous, and semi-autonomous ground, air, and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Robotic sensor and weapons platforms (ground and air), will be ubiquitous on the future battlefield, significantly lowering the risks to our warfighters thus allowing the Army to achieve full-spectrum dominance within the constraints of reduced manpower and casualties.” (Mixed Soldier/Small Robot Team Interaction, US Army Research Laboratory)

Robot warriors are irresistible for a rich and technologically advanced society whose population is increasingly unwilling to enter military service and notoriously intolerant of casualties. Small wonder the United States of America and its allies of the moment are spending astonishing amounts of money and effort toward the goal of automating most if not all aspects of warfare.

Once again DARPA is in the lead with a long list of general and specific programs to create and field ever-smarter and more capable robots for land, sea, air, and space combat. Since the field of robotics draws on just about every scientific discipline the roster of major players is enormous and ever-expanding, but brevity demands concentration here on just a couple.

In March of 2003 the Defense Department unveiled a billion dollar roadmap for unmanned aerial vehicles during the next 25 years with plans calling for developing joint interoperable UAV’s (unmanned aerial vehicles) that are capable of everything from surveillance to air strike. Building on the demonstrated success of the USAF’s Predator (famously taking out a carload of top al-Qaida terrorists with a Hellfire missile), the next step is already flying in the form of Boeing’s X-45, recently selected over Northrop Grumman’s X-47 Pegasus. Other members of the multi-service autonomous aerial robot family are expected to include the Unmanned Combat Armed Rotorcraft (UCAR) and all sorts of “bug bots” (insect-like flying robots).

Space and Naval Warfare Systems Center and its predecessor organizations have been involved in all this since the early 1960s. Because the US Navy and Marine Corps operate in every environment from outer space to undersea, SNWSC efforts run the full gamut from Free Swimmer II to Robart III and the MSSMP flying doughnut. These and other programs are of tangible value in today’s operational environment and provide a solid platform for other scientists working on Future Warrior systems.

See the Future Warriors on the Web at: http://www.darpa.mil

This article first appeared in Small Arms Review V7N10 (July 2004)

Author

  • SAR Staff
    SAR Staff

    View all posts
Tags: 2004BATTEFIELDS BEYOND SCIENCE FICTIONFuture WarriorJULY 2004Robert BruceV7N10
Previous Post

THE TRIJICON ACOG 4X32 BAC SCOPE

Next Post

BOOK REVIEWS: THE MP38, 40, 40/1 AND 41 SUBMACHINE GUN, VOLUME 1

Next Post
Book Reviews: January 2000

BOOK REVIEWS: THE MP38, 40, 40/1 AND 41 SUBMACHINE GUN, VOLUME 1

TRENDING STORIES

  • VALKYRIE ARMAMENT BELT-FED CONVERSION

    VALKYRIE ARMAMENT BELT-FED CONVERSION

    0 shares
    Share 0 Tweet 0
  • The Complete Guide To Colt M-16 Models: Part I

    0 shares
    Share 0 Tweet 0
  • The Second Generation AR57: Drop-in 5.7 Upper For Your AR

    0 shares
    Share 0 Tweet 0
  • Forgotten M16A1 Rifle Manufacturers: GM/Hydra-Matic and Harrington & Richardson – Part I

    0 shares
    Share 0 Tweet 0
  • The New Light and Handy Ruger American Generation II Ranch Rifle

    0 shares
    Share 0 Tweet 0

RECENT POSTS

SIG Sauer’s Full-Size Compact P365 “Fuse”

SIG Sauer’s Full-Size Compact P365 “Fuse”

June 27, 2024
The Importance of Offhand Shooting

The Importance of Offhand Shooting

June 25, 2024
BOOK REVIEW – The Collector’s Guide to the SKS

BOOK REVIEW – The Collector’s Guide to the SKS

June 20, 2024
True to Form: The Tisas 1911A1 ASF

True to Form: The Tisas 1911A1 ASF

June 18, 2024
Setting the Record Straight on the Fedorov Avtomat

Setting the Record Straight on the Fedorov Avtomat

June 6, 2024

QUICK LINKS

  • About Chipotle Publishing
  • About Small Arms Review
  • Advertise with Us
  • Write for Us

CONTACT DETAILS

  • Phone: +1 (702) 565-0746
  • E-mail: office@smallarmsreview.com
  • Web: www.chipotlepublishing.com
  • Chipotle Publishing, LLC 631 N. Stephanie St., No. 282, Henderson, NV 89014
Small Arms Review

FOLLOW US

  • Privacy Policy
  • Disclaimer

© 2022 Chipotle Publishing | All Rights Reserved

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist



No Result
View All Result
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
      • Volume 2
      • Volume 3
      • Volume 4
      • Volume 5
      • Volume 6
      • Volume 7
      • Volume 8
      • Volume 9
      • Volume 10
      • Volume 11
      • Volume 12
      • Volume 13
      • Volume 14
      • Volume 15
      • Volume 16
      • Volume 17
      • Volume 18
      • Volume 19
      • Volume 20
      • Volume 21
      • Volume 22
      • Volume 23
      • Volume 24
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Events
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal

© 2022 Chipotle Publishing | All Rights Reserved

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.