Small Arms Review
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Podcast
  • Newsletter
  • Events
  • FrankenGun Challenge
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Podcast
  • Newsletter
  • Events
  • FrankenGun Challenge
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
No Result
View All Result
Small Arms Review
No Result
View All Result
Home Articles

New Assault Rifle Cartridge from Finland: The M/2030

Scott Barbour by Scott Barbour
August 3, 2022
in Articles
New Assault Rifle Cartridge from Finland: The M/2030
Share on FacebookShare on Twitter

By Al Paulson

As the dawn of a new millennium approaches, small-arms designers and military planners around the world are developing new cartridges and individual weapons for the coming century. One of the most thought-provoking concepts for a new military rifle cartridge comes Finland. Viewed by its designer, Juha Hartikka, as the next logical step in the evolution of assault rifle cartridges, the new round incorporates such interesting concepts as a straight case, a standard projectile diameter of between 4 and 5 millimeters, a bore diameter of 9 to 10 mm, and a screaming muzzle velocity of 1,500 to 2,000 meters per second (circa 4,900 to 6,500 fps). This round should be lighter than current assault rifle ammunition and it should be cheaper to produce. The same case design is loaded with a heavy 9-10 mm projectile to produce a subsonic round for use with a sound suppressor. The same barrel would be used for firing both ultra-high velocity 5 mm projectiles as well as subsonic 10 mm projectiles without any modification whatsoever. Furthermore, a rifle designed for this cartridge should be simpler and cheaper to manufacture than a weapon designed for the 5.56x45mm round. Clearly, these are ambitious design goals.

Hypersonic and subsonic variants of the new M/2030 assault rifle cartridge. The hypersonic round features a subcaliber projectile with discarding sabot, plastic cartridge case, and a muzzle velocity of 1,500 to 2,000 meters per second (circa 4,900 to 6,500 fps). The full caliber subsonic round features 9mm to .40 caliber projectile, brass cartridge case, and a muzzle velocity of about 305 mps (1,000 fps). The two key elements to Juha Hartikkaís cartridge design are a countersunk base in the cartridge case and a subcaliber bullet with sabot.

The M/2030 cartridge incorporates some novel and some well-established design concepts. The two key elements to Hartikka’s cartridge design are a countersunk base in the cartridge case and a subcaliber bullet with sabot. Hartikka envisions a remarkably simple and inexpensive weapon for this cartridge that operates from the straight blowback principle. The rifle would fire using two different ignition modes depending upon whether semiautomatic or full-auto fire is selected. The weapon would fire from the closed bolt for semiautomatic fire to optimize single shot accuracy, while it would fire from an unusual open-bolt design for full-auto fire to minimize recoil and shot dispersion. Open-bolt firing would feature advanced ignition within a very long chamber before the bolt reaches battery position for smooth full-auto fire. After discussing each of Hartikka’s cartridge design elements in some detail, we’ll take a look at how the overall cartridge design will impact weapon design.

Cartridge Design

The projectile for the standard ultra-high velocity M/2030 round—which one might term a hypersonic cartridge—looks rather like a plastic 10mm hollow point bullet with a large pointed spike sticking out of the cavity. The spike is manufactured from a hard metal alloy or ceramic, while the surrounding accelerator or sabot is fabricated from plastic. The light weight of the plastic accelerator—combined with the plastic’s low coefficient of friction with the barrel—enables the subcaliber bullet and sabot to reach very high velocity before reaching the muzzle.

Winchester/Olin Corporation’s M948 Saboted Light Armor Penetrating cartridge in 7.62x51mm delivers comparable accuracy to 7.62x51mm match-grade ammunition.

Using a discarding sabot is a relatively old concept, dating back at least to the 1940s, when German designers developed a new artillery round called the Peenemunder Pfeilgeschoss (the Peenemunde Arrow Projectile). Modern ultra-high speed, fin-stabilized subcaliber arrow-shaped penetrator rounds are based upon the Pfeilgeschoss concept. While these tank rounds are extremely accurate, the discarding sabot concept has not been as successful thus far when applied to ammunition of rifle rather than cannon caliber, due somewhat disappointing accuracy.

A notable exception to such accuracy problems is Winchester/Olin Corporation’s Saboted Light Armor Penetrating cartridge or SLAP for short. Variants are available in 7.62x51mm (U.S. military designation M948) and .50 BMG (12.7x99mm, military designation M903 for the .50 caliber SLAP and M962 for the .50 caliber SLAP-Tracer). The 7.62mm rounds function reliably in most weapons, including bolt-action rifles, the M60 machine gun, the M134 Gatling gun, and the M240 machine gun. The M903 SLAP round is particularly relevant to the present discussion, since it delivers comparable accuracy to 7.62x51mm match-grade ammunition. Winchester’s success with this SLAP round clearly demonstrates that it is, indeed, possible to make a saboted cartridge of rifle caliber that will deliver acceptable and even outstanding accuracy. Winchester’s success with the SLAP round provides encouragement that Hartikka’s concept of a saboted round may be viable (for more information on Winchester’s SLAP rounds, visit the website at http://www.army-technology.com/contractors/ammunition/winchester/index.html).

The full caliber, 9mm subsonic variant of the M/2030 cartridge version of the sunk base cartridge with a view of the base design of a fired case. The shallow groove around the outside of the base is only related to the manufacturing methods of the case; the real extractor groove is situated inside the countersunk cartridge base.

The conical bullet of the Hartikka’s M/2030 hypersonic round has a caliber about half the diameter of the bore. A sabot seals the bore ahead of the combustion gases, carrying and guiding the bullet down the barrel, after which air resistance discards the sabot from the bullet. Since the subcaliber projectile neither centers itself in the bore nor slides down the rifling of the bore, it can be designed for optimum flight characteristics at supersonic speeds. This means using straight, smooth surfaces. While a teardrop shape is the ideal form (in terms of exterior ballistics) for projectiles traveling at subsonic velocities, this is a poor shape at supersonic speeds. Based on wind tunnel tests leading to the design of the Concorde supersonic passenger jet, Hartikka believes a bullet tip shaped like a straight, sharp cone is best. A shorter cone makes an efficient base at these velocities.

If this double cone bullet leaves the muzzle at Mach 6 (six times the speed of sound), Hartikka’s research suggests the projectile will fly 300 to 500 meters in almost a straight line until the bullet goes transonic. Once this bullet becomes subsonic, it destabilizes, tumbles, and drops suddenly. The net result is a cartridge that shoots to point of aim out to half a kilometer, while providing a shorter danger zone beyond the weapon’s effective range, minimizing the potential of collateral noncombatant casualties.

Size comparison of 5.45x39mm ball, 7.62x39mm experimental cartridge with hard metal core protruding from jacket (made by Lapua in Finland), and Juha Hartikka’s 9mm subsonic variant of the M/2030 cartridge.

The same case can be loaded with a full caliber rather than subcaliber projectile to produce a subsonic cartridge similar in performance and recoil characteristics to a 9x19mm or .40 S&W submachine gun round. In fact, the full caliber case for the M/2030 is designed to produce muzzle velocities ranging from 290 mps (951 fps) to 450 mps (1,476 fps) depending on bullet weight, so this round could be tailored to give .357 Magnum-like performance out of a straight blowback rifle.

Thus a single weapon could be used as a Personal Defense Weapon (PDW) or an Objective Personal Weapon (OPW).

Weapon Design

The weapon Hartikka envisions for the M/2030 cartridge draws its inspiration from World War I, when the Coenders brothers of Germany developed a 20mm automatic aircraft cannon for Reinhold Becker using a novel design that used an unusually long chamber and a bolt that actually entered the chamber. German and U.S. patent applications date from the first year of the war, 1914, and U.S. Patent 1,144,285 was issued in June 1915. Manufactured by Stahlwerke Becker of Reinickendorf, Germany, the Becker automatic cannon featured simple blowback operation, inertial locking, a remarkably light weight of just 66 pounds (30 kg), a 12-round detachable box magazine, a barrel length of 40 calibers, a cyclic rate of 400 rpm, and a muzzle velocity of 1,570 fps (479 mps). While designed expressly for use from aircraft, the successful Becker design was also pressed into an anti-aircraft role late in the war.

Countersunk bases of fired and unfired cases. The interfacing of the cartridge and bolt is the inverse of conventional designs. One of Hartikka’s principal innovations is that the bolt head and extractor would push into the base of the M/2030 cartridge case, rather than using a more conventional design where the bolt slides over the base of the cartridge.

After the cessation of hostilities, the design was licensed to the Swiss automotive company Seeback Maschinenbau Aktien Gesellschaft (Semag) near Zurich in order to circumvent the terms of the Treat of Versailles. Using German financial backing and personnel, Semag modified the design to incorporate a longer cartridge and barrel to achieve higher average muzzle velocity of 2,247 fps (685 mps). This weapon was mounted on a wheeled cart with seat for the gunner, and was marketed in 1921 as the Semag Infantry Gun. Years later, this weapon was still in service and saw combat during the Spanish Civil War of 1936-1939 and during the Sino-Japanese War of 1937-1945. Both the 20mm Becker aircraft gun and the 20mm Semag infantry gun were a success on the battlefield. But Semag overreached the technology in 1923, when the company upsized the Becker design to fire a 25mm round. The resulting automatic cannon was too heavy for infantry use and the company foundered.

Oerlikon adapted the Becker automatic cannon design for its 20mm anti-tank rifle, the SSG36. The massive recoil of the 20mm cartridge was quite effectively tamed by using the Becker principle of operation. Furthermore, the success of the SSG36 demonstrated that it was possible to build a successful straight blowback rifle up to 20mm producing a muzzle velocity of 2,460 fps (750 mps).

The Swiss firm Werkzeug Maschinenfabrik Oerlikon subsequently took over the rights to Becker’s patents, and by 1935 Oerlikon was producing a new family of 20mm automatic cannons—using three different 20mm cartridges—based on the innovative Becker design. Germany adopted the Model S aircraft variant of the Oerlikon, and this Becker-type automatic cannon served the Luftwaffe with distinction through the Battle of Britain. Oerlikon also adapted the Becker design for its 20mm anti-tank rifle, the SSG36.

Operating by the straight blowback principle, the original Becker cannon fielded so successfully during World War I uses a 20mm round with almost a straight cartridge case. The cartridge features a rebated base that enabled the use of a slimmer bolt face that could follow the cartridge into the weapon’s unusually deep chamber.

A striker hits the primer about a half inch (a bit more than one centimeter) before the cartridge is fully seated in the weapon’s chamber, a practice commonly called “advanced ignition” or “floating fire” in various languages. The Becker design is particularly innovative since the cartridge is already completely surrounded by the very long chamber at the moment of ignition, so the combustion gases cannot burst the case before the bolt has reached battery position.

An instant after primer ignition, bolt momentum pushes the rebated cartridge to the front end of the barrel’s extra-long chamber so the expanding case can seal against the rearward pressure of the expanding combustion gases. Gas pressure then pushes the empty case rearward through the long chamber until the projectile emerges from the muzzle and gas pressure drops to a safe level.

The Becker automatic cannon featured simple blowback operation inertial locking, an unusually long chamber, a remarkably light weight of just 66 pounds (30 kg), a 12-round detachable box magazine, a barrel length of 40 calibers, and a cyclic rate of 400 rpm. The Becker operating principle employs a small-diameter bolt head that follows the rebated cartridge base deep into the chamber. After firing, the case and the bolt could safely begin to move rearward inside the long chamber, which prevented the case from rupturing from the remaining chamber pressure.

Using very high bolt velocity as a substitute for a securely locked breech has three principal advantages: (1) it enables the construction of a lightweight cannon, (2) it dampens weapon recoil considerably, and (3) it dramatically reduces vibration during full-auto fire since the bolt is effectively buffered at both ends of its cycle. This latter phenomenon occurs because advanced ignition within the long chamber buffers the bolt’s forward movement, while the long main operating (recoil) spring buffers the rearward movement.

Like the Becker cannon of 1914, a 21st century weapon designed for Juha Hartikka’s new M/2030 round would feature simple blowback operation and an extra-long chamber to support the cartridge case from the moment of advanced ignition until the bolt reaches the battery position when full-auto fire is selected. Unlike the Becker cannon, Hartikka’s assault rifle would fire from the closed bolt when semiautomatic fire is selected. The long chamber would support the fired case during the subsequent first phase of bolt movement out of battery.

One of Hartikka’s principal innovations is that the bolt head and extractor would push into the base of the M/2030 cartridge case, rather than using a more conventional design where the bolt slides over the base of the cartridge. This approach facilitates sealing the extra-long chamber of the simple blowback assault rifle. This concept also enables looser tolerances on the bolt, since it will self-center on the hollow cartridge base.

The Semag Infantry Gun, which was manufactured by the Swiss automotive company Seeback Maschinenbau Aktien Gesellschaft (Semag), employed the Becker operating design adapted to use a longer cartridge and barrel to achieve substantially higher muzzle velocity.

Thanks to the relatively light projectile weight of this hypersonic cartridge, ultra-high projectile velocity does not require ultra-high chamber pressure. A subcaliber projectile that is half the bore diameter should be able to achieve about four times the acceleration of a bullet that is twice the diameter without raising chamber pressure. This will probably require the development of a faster powder than is currently being produced to achieve hypersonic (Mach 5) velocities, but very fast powders are now available for experimenting with M/2030-style saboted cartridges. The plastic case of the hypersonic round would feature a metal primer cup to reinforce the base of the cartridge, and a novel primer of neither Boxer nor Berdan type that sits directly against the powder.

Using a plastic case requires forming the powder into a compressed briquette that fits snugly in the case, in order to provide enough case rigidity for proper magazine functioning. When the primer ignites, it forces the saboted bullet forward into the rifling of the bore uniformly and at low velocity before the powder briquette ignites. This eliminates the initial instability normally associated with a saboted rifle projectile as it detaches from the cartridge case, thus eliminating one of the factors contributing to the relative inaccuracy commonly seen in saboted rifle cartridges. It is worth noting that compressing nitrocellulose powder into a solid briquette using solvents for gluing the grains together is established technology. Lapua, for example, was using compressed powder for unbulleted cartridges as early as the 1980s.

The subsonic M/2030 round uses conventional powder, bullet, and Boxer or Berdan priming, while its hollow base cartridge case is made out of brass rather than plastic.

A Sten submachine gun can be modified into a proof of concept gun by adding a new barrel, bolt and magazine since the M/2030 cartridge is designed for straight blowback action even at subcaliber velocities exceeding 1,500 mps (circa 4,900 fps). Juha Hartikka has also developed the design for a specially reinforced sound suppressor capable of handling both the subsonic and saboted hypersonic M/2030 rounds. Here Finnish ammunition and small-arms guru P.T. Kekkonen is operating a customized, suppressed Sten.

Since the hypersonic M/2030 round uses a plastic case and subcaliber projectile, these will be relatively inexpensive and lightweight cartridges. Furthermore, the countersunk cartridge base of both the hypersonic and subsonic rounds enables the use of a very simple and inexpensive weapon design not unlike the Sten submachine gun. In fact, a Sten could be modified into a proof of concept gun by adding a new barrel, bolt and magazine. Juha Hartikka, who has designed and built more than 300 different silencer variants since 1990 (many of which are marketed by Asesep„nliike BR-Tuote Ky, Sahamyllynkatu 33, 80170 Joensuu, Finland), has also developed the design for a specially reinforced sound suppressor capable of handling both the subsonic and saboted hypersonic M/2030 rounds. Using a saboted round with a suppressor not expressly designed to deal with a discarding sabot could lead to catastrophic structural failure.

While the terminal ballistics of the hypersonic round remain unproven and an ideal powder for the hypersonic round is not yet available, the innovative concept of the dual performance hypersonic and subsonic M/2030 rounds is thought-provoking to say the least. Developed with input from Finnish ammunition and small-arms guru P.T. Kekkonen (whom I view as a “Living National Treasure” of Finland), Juha Hartikka has spawned a concept which has some fascinating implications for the future of small-arms design. Hartikka is continuing the development of this countersunk cartridge base, hypersonic projectile concept. The latest iteration is called the M/2060 cartridge. But that’s another story. Meanwhile, anyone interested in learning more about Hartikka’s work can visit his website (http:/www.personal.inet.fi/business/reflex.suppressors), e-mail him (j_hartikka@hotmail.com), or write him (Juha Hartikka, 83430 Käsämä, Finland).

This article first appeared in Small Arms Review V3N3 (December 1999)

Author

  • SAR Staff
    SAR Staff

    View all posts

Tags: 1999
Previous Post

A Machine Gunner’s Guide To Las Vegas

Next Post

Letters to SAR: V3N3

Next Post
Letters to SAR: V3N3

Letters to SAR: V3N3

TRENDING STORIES

  • U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

    U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

    0 shares
    Share 0 Tweet 0
  • Recreational Use Of 40MM Grenade Launchers

    0 shares
    Share 0 Tweet 0
  • Col. Rex Applegate: The Knife Designs of a Close-Combat Legend

    0 shares
    Share 0 Tweet 0
  • Customizing the Already Custom SIG P320 Spectre Comp

    0 shares
    Share 0 Tweet 0
  • Evolution of the U.S. Grenade Launcher From World War II to Today’s Conflicts

    0 shares
    Share 0 Tweet 0
  • Trending
  • Comments
  • Latest
U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

Recreational Use Of 40MM Grenade Launchers

Recreational Use Of 40MM Grenade Launchers

Col. Rex Applegate: The Knife Designs of a Close-Combat Legend

Col. Rex Applegate: The Knife Designs of a Close-Combat Legend

SIG Spectre Comp with AXG Grip Module

Customizing the Already Custom SIG P320 Spectre Comp

New Review: V19N1

New Review: V23N3

SAR|Special

SAR|Special

The Grand Power Q100

The Grand Power Q100

A Fading Star: The star S135 Submachine Gun, That is

A Fading Star: The star S135 Submachine Gun, That is

Choosing a Thompson: What Collectors Should Know

Choosing a Thompson: What Collectors Should Know

Early Testing and Evaluation of the U.S. AR-15/M16 Rifle

Early Testing and Evaluation of the U.S. AR-15/M16 Rifle

Origins of the Blowback System: Its Trials and Triumph

Origins of the Blowback System: Its Trials and Triumph

Buried Treasure or Baloney? A Tale of Two Springfields

Buried Treasure or Baloney? A Tale of Two Springfields

QUICK LINKS

  • About Chipotle Publishing
  • About Small Arms Review
  • Advertise with Us
  • Write for Us

CONTACT DETAILS

  • Phone: +1 (702) 565-0746
  • E-mail: office@smallarmsreview.com
  • Web: www.chipotlepublishing.com
  • Chipotle Publishing, LLC 631 N. Stephanie St., No. 282, Henderson, NV 89014
Small Arms Review

FOLLOW US

  • Privacy Policy
  • Disclaimer

© 2022 Chipotle Publishing | All Rights Reserved

No Result
View All Result
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
      • Volume 2
      • Volume 3
      • Volume 4
      • Volume 5
      • Volume 6
      • Volume 7
      • Volume 8
      • Volume 9
      • Volume 10
      • Volume 11
      • Volume 12
      • Volume 13
      • Volume 14
      • Volume 15
      • Volume 16
      • Volume 17
      • Volume 18
      • Volume 19
      • Volume 20
      • Volume 21
      • Volume 22
      • Volume 23
      • Volume 24
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Podcast
  • Newsletter
  • Events
  • FrankenGun Challenge
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal

© 2022 Chipotle Publishing | All Rights Reserved

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.

Subscribe To Our Weekly Newsletter

Are you in the know?
Stay up to date with the latest articles.

Facebook-f Linkedin Instagram

Redirecting to External Website

You are leaving the Small Arms Review website and will be redirected to an external link in a 5 Seconds.
VISIT NOW!