Small Arms Review
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Events
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Events
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal


No Result
View All Result
Small Arms Review


No Result
View All Result
Home Ammunition

The G2 RIP Ammunition: Next Generation Ammunition

by SAR Staff
September 1, 2015
in Ammunition, Articles, Articles by Issue, Search by Issue, V19N7 (Aug Sep 2015), Volume 19
The G2 RIP Ammunition: Next Generation Ammunition
Share on FacebookShare on Twitter

Pre-cut copper bar stock. From here the copper will be turned to the desired diameter for the projectile being made and then multiple projectiles will be manufactured from each.

By Christopher R. Bartocci

Like firearms, ammunition hits a peak of development and levels off. Once in a while, something really new hits the market. Back in 1991, Winchester Black Talon was introduced to the market and there was an outcry from gun control advocates and some medical personnel that his round was too lethal and should be banned because of its excessive destructive nature. At what point do we really say any ammunition is too dangerous? The purpose of a defensive bullet is to stop the threat. There are different ways to do that such as by destroying major blood vessels and lungs and heart and this is accomplished by using a projectile that destroys tissue. Full metal jacket projectiles do this by punching holes in them; hollow point projectiles do this by destroying tissue as they expand. The more the projectile fragments the more separate wound channels are made thus more tissue is destroyed with an end result in stopping the threat. Some projectiles do this better than others. Anyone who has studied the theory and application of wound ballistics knows that there is no magic bullet. There is no magic caliber either.

Interestingly, one would be surprised how often hollow point projectile do not open up as designed. There are many factors; this includes initial barriers such as glass, wood, drywall and most importantly clothing. Hollow point projectiles can become clogged with clothing (cotton, denim, polyester, etc.) that will prevent them from opening and also depending on the density of the tissue the bullet strikes. Harder muscle and bones for instance can affect the opening of a projectile. Then straight soft tissue hits can open projectiles up as designed. It would not be uncommon at all to have multiple shots and have only 20% of the projectiles actually mushroom as designed due to all of these potential variables. With that being said, some believe in the single projectile that retains all of its weight and expands nearly double in diameter as the way to go where others believe in fragmentation. Leave that up to the individual to decide. However, from the standpoint of physiology, the more tissue destroyed the more apt you are to stop an attacker.

Precision CNC manufacturing goes into each projectile. This is why the cost of the ammunition is high as this is a lengthy and detailed CNC manufacturing process.

Bullet manufacturing and development has taken a direction away from lead in the area of high performance hollow point ammunition beginning with solid copper Barnes bullets – made in both rifle and pistol rounds. Originally developed in high caliber rifle rounds for deep penetration in heavy to dangerous game, the solid copper projectile now make up some very good pistol projectiles including the Barnes TAC-TX. Machined/CNC machined projectiles from solid copper rod or different material were first seen with LeHigh Defense. These projectiles seemed extremely effective but expensive. Then again this is not target shooting ammo.

The newest, opening their doors late in 2013, is G2 Research with The RIP (Radically Invasive Projectile). This is quite different from anything that has been done in the past. What truly sets this projectile apart from the rest is explained by Chris Nix of G2 Research

“Like LeHigh Defense, the design has features that are precision machined from a solid copper bar. These machined geometries create weaker cross sections that fail or fracture predictably under certain loads. Where we differ is that our machined features are not just engineered to create weak points in the structure. Geometry is the key variable in the concept of this technology. The trocars and other machined features play a significant role in barrier penetration and where the energy is dissipated. There is a moment in time in which this piercing action transfers from one medium to the next with less resistance thus retaining energy in the form of velocity. Through hard, semi hard and soft mediums, the projectile’s performance is optimized by the result of how the geometry is presented relative to its direction of travel. It is evident in hard barrier testing like sheet metal that the punctured hole is cleaner and if the sheet metal is unconstrained you can observe that it falls over like a domino instead of being knocked down. What is happening here is the barrier is being defeated with less energy loss.

machined projectile on the copper rod which has not been cut off from the rod. Once the projectile is cut off, the machining of the next one begins. The process is repeated until all of the copper rod is used up.

“The 45 degree autoglass test shows trajectory being retained as a result of this application of technology. In fact in the real world the angles of presentation are quite compounded and variable as is the resistance at point of impact of that medium. To better explain in a real world defense situation a law enforcement officer may not stand directly in front of the vehicle that is trying to run them over especially if given the opportunity to move. Different makes of vehicles yield a lottery of curvature and geometrical differences. If the vector of shot places the trajectory’s path intersecting the surface of the windshield closer to the corners verses the center, this can make a difference in resistance too. With G2 Research’s design there is a broader range of angles where the round maintains trajectory. Your more conventional projectile shape shows a higher propensity to glance as its rounded nose is presented to these types of obstacles at lesser angles. To incapacitate the threat you must hit it and under distress shooting as described shot placement will be compromised enough.

The G2 RIP ammunition is offered in .380 Auto, 9mm, .40, .357 SIG and .45 Auto calibers. It is also offered in .223 Rem. and .300 Blackout.

“The heavy clothing test defined by the FBI is 4 layers of heavy denim. What we test for here is that the round will penetrate this barrier and still perform its expansion or fracture (depending on the product) through this medium. During development we found that our design would very consistently perform this requirement. So our team decided to amp the test up a little to see where we drop off in performance. The results compared to other rounds were quite amazing and it was evident that we were on to something. The large cavity along with the other geometries mentioned work together to prevent clogging that would otherwise impede its performance. The results were 12 plus layers. In real world scenarios it’s not impractical to create the equivalent of more than 4 layers of denim especially in colder climates.

G2 Research .380 Auto 62 Gr. R.I.P. 2.75′ Barrel.
In this author’s opinion, the most impressive of all loads was the .380 Auto load. This 62 grain projectile was fired at a velocity of 1,238 feet per second. Of the initial 62 grain weight, approximately 62% of the original weight was retained. The trocar penetration was from 2 3/4 to 4 3/4 inches in depth and the projectile core penetrated 8 3/4 inches.

“Once the round has entered soft tissue targets the geometry is still working for us. Another difference that exists between us and some other machined solid copper projectiles is the cuts along the axis of the projectile do not go into the hollow point. An increased rate of radial pressure built from fluid or tissue is a result of the reduced deceleration at impact mentioned earlier. These hydrostatic forces are contained inside the cylinder until the hoop strength of the material fails. When the failure along the axis occurs it is quite mechanically explosive. Each petal inside the soft target will carry its wave of energy after they’ve fractured and traveled along their predictable paths. This conical disbursement of 8 trocars are approximately 60 degrees of included angle. Each of the 8 trocars path along that 60 degree conical are an approximate radial increment of 45 degrees. This creates a wave of energy that is very easy to witness in the slow motion segments of the gel shots other than the temporary wound cavity resulting from these now individual projectiles energy push. Their shape is designed to slice through muscle tissue, arteries and organs with less resistance. Our 8 petal versus 3 petals increases the probability of one of those fragments compromising a vital, thus increasing odds of incapacitation per shot by a factor of 2.66. Especially if shot placement isn’t perfect under a distress real world self-defense situation.

“We all play by the same rules and constraints regarding SAAMI specifications for loading of OAL, diameters and pressures, materials available, choices in brass, primer and powder technologies. 1/2 MV^2= Ke

“What this has done is created a seesaw between Mass and Velocity as many manufactures have juggled those two variables to achieve similar results of the predicate.

“With this new and radical approach to geometry, G2 Research has introduced a new variable that allows the energy to be put more where
it is intended.”

Shown are all of the recovered fragments from the .380 Auto caliber RIP projectile fired into calibrated ordnance gel.

The research and development at G2 is continuously on-going and geared for new products. The RIP projectile was more than a year in development. Manufacturing starts off with a single copper bar that is 12 feet long and depending on the caliber gets 147 to 238 projectiles. The CNC machine manufactures a projectile from the end of the copper bar. Each projectile takes about 20 to 50 seconds to manufacture depending upon the caliber. That round is cut at the base, falls in a bucket and the next projectile is made. The process continues until the bar is used up.

Outside loading is used. G2 build the components to adapt their machines to load the G2 projectiles. G2 has a very strict quality control and testing policies in place for anything loaded by their vendors. G2 outsources brass, powder and primers. All the ammunition is subjected to SAAMI specifications. The accuracy requirement is 2 inches at 25 yards. These are not designed for target shooting or match accuracy; they are designed for an up close protection round. Currently, G2 offers the RIP projectile in calibers .380 Auto, 9x19mm, .357 SIG, .40 cal. and .45 Auto.

Samples of .380 Auto, 9mm, .40 and .45 Auto were provided to SAR for test and evaluation. We at SAR do not like to take anyone’s word for how a product functions or works, we like to test it ourselves. There were 4 gel blocks made up to FMI standards. The gel blocks were calibrated with a BB fired at 589 feet per second.

The .380 Auto was the first tested. The gel was calibrated with a single BB fired at 589 feet per second with a depth of 3.34 inches. The 62 grain round was fired in a Ruger LCP with a 2.75 inch barrel at a muzzle velocity of 1,238 feet per second. The total cavity length was 4.875 inches. The trocars penetrated at 360° from 2 3/4 to 5 inches as advertised. The core penetrated 8.75 inches. The projectile retained 62% of its weight. This was without a doubt the most impressive result.

G2 Research 9mm 92 Gr. R.I.P. 4.75′ Barrel.
The 9mm projectile is a 92 grain projectile fired at a velocity of 1,347 feet per second. The trocar penetration was 5 1/4 to 8 3/4 inches with the core stopping at 11.12 inches

The 9x19mm was next. The gel was calibrated with a single BB fired at 590 feet per second with a depth of 3.14 inches. The 92 grain round was fired in a Browning Hi-Power with a 4.75 inch barrel at a muzzle velocity of 1,347 feet per second. The total cavity length was 7 inches. The trocars penetrated at 360° from 5 to 7 inches in depth. The core penetrated 11.125 inches. The projectile retained 49% of its weight with an average expansion diameter of .366 inches with the largest being .373 inches.

Next was the .40 caliber. The gel was calibrated with a single BB and fired at 578 feet per second with a depth of 3.24 inches. The 115gr round was fired in a Glock 22 with a 4.49 inch barrel at a muzzle velocity of 1,164 feet per second. The total cavity length was 4.75 inches. The trocars penetrated at 360° from 5 to 6 inches in depth. The core penetrated 9.5 inches. The projectile retained 45.1% of its weight with an average expansion diameter of .400 inches.

Shown are the recovered 9mm fragments from the 9x19mm caliber RIP projectile fired from 12 feet into calibrated ordnance gel.

Lastly was the .45 Auto. The gel was calibrated with a single BB and fired at 576 feet per second with a depth of 2.97 inches. The 158 grain projectile was fired in a Springfield Armory M1911A1 with a 5 inch barrel at a muzzle velocity of 1,024 feet per second. The total cavity length was 5.75 inches. The trocars penetrated at 360° from 5.5 to 8 inches in depth. The core penetrated 10.75 inches. The projectile retained 52% of its original weight with the average expansion diameter of .450 inches.

All rounds fired performed as advertised. All trocars broke off in aradial pattern creating multiple wound channels. Gel is not the end all of testing. It takes into account the simulation of soft tissue. It does not take into account the density of muscle and harder tissues found in various organs nor bone. We were limited on gel blocks so it was not possible to test for the other variables. Based on the gel testing the projectile does appear to be extremely effective. Depending on the caliber there are 7 to 9 separate wound channels. This drastically increases the chance of hitting a vital organ with a single shot and stopping the target as opposed to a single projectile.

G2 Research .40 S&W 115 Gr. R.I.P. 4.49′ Barrel.
The .40 caliber projectile is a 115 grain projectile fired at a velocity of 1,164 feet per second. The trocar penetration was 5 to 6 inches with the core penetrating 9.5 inches in depth.

Not unlike Winchester’s Black Talon, G2 has received bad press for making an evil devastating projectile.

Chris Nix of G2 continues: “Not official, but there are two sides of this coin on the internet. There are people that make claims that we are the most destructive ammo ever developed and we should all burn in hell for creating such a thing. The other side says that the ammo is a gimmick round that has absolutely no power for defensive and we should burn in hell for our marketing. The people who actually test the ammo for themselves realize that we are an incremental step in the evolution of modern ammunition and we will continue to research and develop its evolution.

“We believe that at this stage many people are trying new forms of defense with lead free projectiles and so far no one has created a round that we would be scared to carry in our own guns. We believe our round is more efficient in certain aspects of its life cycle and in the arena of self-defense, any advantage is a good advantage.”

Shown are the .40 caliber fragments recovered from the .40 caliber RIP projectile that was fired from 12 feet into calibrated ordnance gel.

Another line of ammunition recently introduced by G2 is their VIP (Visually Indicated Projectile) based on cold tracer technology.

According to Chris Nix, “Our VIP uses a cold tracer technology that nullifies the incendiary and toxic qualities of the common tracer using a proprietary technology affixed to the back of the projectile. The particular light glow of the powder we use in the round lights the back of the projectile much like the glow in the dark stickers that we are all familiar with. Our Cold Tracer is meant for low light conditions where the trace could help to quicker get on target in a panic situation or as a training round that the instructor can see. Unlike, traditional tracers the vector of light emitted from the VIP is axial to the projectile, which means the light is coming off the tail end. This makes the illumination only visible from an approximated 15 degree included angle from the shooter’s point of view. No one outside that field of view can see the light trail therefore not compromising the shooter’s position.”

As of this writing the VIP is only available in 9mm but soon to be introduced in .45 Auto. Due to the cold tracer technology, the VIP round is safe to use indoors and will not set a fire to a dry range.

G2 Research .45 ACP 158 Gr. R.I.P. 5′ Barrel.
The .45 caliber projectile weighs 158 grains and fired at a velocity of 1,024 feet per second. The trocar penetration was 5 1/2 to 8 1/2 inches. The core penetrated 10.75 inches.

G2 also offers rifle ammunition in both super and subsonic .300 Blackout as well as .223 Rem. The Trident is a precision CNC machined, lead free, solid copper projectile engineered to expand to nearly 3 times its original diameter while maintaining almost 100% of its initial weight. Each Trident projectile is engineered to expand in a predetermined velocity range. As an example, a competing .30 cal. 150 grain projectile will expand at velocities in excess of 2,600 fps when fired from a .308 rifle, but when the same 150 grain projectile is used in a .300 blackout, the performance is less than ideal. Since each projectile is individually machined, G2 can tailor the performance to the specific application. While some companies take a bigger is always better approach, the Trident rounds are optimized for expansion as well as penetration to provide the optimum in energy transfer. Additionally, the Trident round only expands when it contacts tissue, so it is suppressor safe. While the Trident round was specifically designed for hunting, it is equally effective as a self-defense round. The Trident will penetrate clothing and heavy denim and expand as designed on soft targets, yet still retain its mass as it punches through solid barriers such as drywall, sheet metal and auto glass.

Shown are the recovered .45 Auto caliber fragments recovered from a .45 Auto caliber RIP projectile that was fired from 12 feet into calibrated ordnance gel.

The RIP, VIP and Trident lines of ammunition are certainly a new take on ammunition mating high-tech manufacturing to projectiles. With a MSRP ranging from $49.99 to $59.99, you will not be target shooting with it. This will go in the magazine of your personal defense handgun or rifle. Only time will tell how effective this is on an assailant. But from a concept, execution and testing it appears as this will take its place alongside other well established personal defense rounds.

This article first appeared in Small Arms Review V19N7 (September 2015)

Author

  • SAR Staff
    SAR Staff

    View all posts
Tags: 2015Christopher R. BartocciG2 RIP AmmunitionSEPTEMBER 2015V19N7
Previous Post

SCCY INDUSTRIES CPX-2: An Every Day Carry Gun for Everyone

Next Post

Japanese Taish? Type 11 (Model 1922) Light Machine Gun

Next Post
Japanese Taish? Type 11 (Model 1922) Light Machine Gun

Japanese Taish? Type 11 (Model 1922) Light Machine Gun

TRENDING STORIES

  • VALKYRIE ARMAMENT BELT-FED CONVERSION

    VALKYRIE ARMAMENT BELT-FED CONVERSION

    0 shares
    Share 0 Tweet 0
  • The Complete Guide To Colt M-16 Models: Part I

    0 shares
    Share 0 Tweet 0
  • The Second Generation AR57: Drop-in 5.7 Upper For Your AR

    0 shares
    Share 0 Tweet 0
  • Forgotten M16A1 Rifle Manufacturers: GM/Hydra-Matic and Harrington & Richardson – Part I

    0 shares
    Share 0 Tweet 0
  • The New Light and Handy Ruger American Generation II Ranch Rifle

    0 shares
    Share 0 Tweet 0

RECENT POSTS

SIG Sauer’s Full-Size Compact P365 “Fuse”

SIG Sauer’s Full-Size Compact P365 “Fuse”

June 27, 2024
The Importance of Offhand Shooting

The Importance of Offhand Shooting

June 25, 2024
BOOK REVIEW – The Collector’s Guide to the SKS

BOOK REVIEW – The Collector’s Guide to the SKS

June 20, 2024
True to Form: The Tisas 1911A1 ASF

True to Form: The Tisas 1911A1 ASF

June 18, 2024
Setting the Record Straight on the Fedorov Avtomat

Setting the Record Straight on the Fedorov Avtomat

June 6, 2024

QUICK LINKS

  • About Chipotle Publishing
  • About Small Arms Review
  • Advertise with Us
  • Write for Us

CONTACT DETAILS

  • Phone: +1 (702) 565-0746
  • E-mail: office@smallarmsreview.com
  • Web: www.chipotlepublishing.com
  • Chipotle Publishing, LLC 631 N. Stephanie St., No. 282, Henderson, NV 89014
Small Arms Review

FOLLOW US

  • Privacy Policy
  • Disclaimer

© 2022 Chipotle Publishing | All Rights Reserved

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist



No Result
View All Result
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
      • Volume 2
      • Volume 3
      • Volume 4
      • Volume 5
      • Volume 6
      • Volume 7
      • Volume 8
      • Volume 9
      • Volume 10
      • Volume 11
      • Volume 12
      • Volume 13
      • Volume 14
      • Volume 15
      • Volume 16
      • Volume 17
      • Volume 18
      • Volume 19
      • Volume 20
      • Volume 21
      • Volume 22
      • Volume 23
      • Volume 24
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Events
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal

© 2022 Chipotle Publishing | All Rights Reserved

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.