Small Arms Review
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Events
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Events
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
No Result
View All Result
Small Arms Review
No Result
View All Result
Home Articles

BUILDING A BETTER BARREL

by SAR Staff
August 26, 2009
in Articles, Articles by Issue, Search by Issue, V12N11 (Aug 2009), Volume 12
BUILDING A BETTER BARREL
Share on FacebookShare on Twitter

By Steve Baughman

Since the beginnings of the creation of firearms, man has had a continuing quest to develop guns that shoot faster, farther, and with more accuracy. Technology and manufacturing process imrpovements in the art of rifle building continue, and the benefits are applicable to all of us in the shooting community. Much of these improvements start with the rifle barrel itself.

Superior Barrels, a small up-start company, was created with the purpose of building barrels that shoot with outstanding accuracy longer than has generally been achieved. Undoubtedly, most barrel manufacturing companies already provide outstanding quality and accuracy in their products, and that is good enough for most of us. Superior Barrels goal is to provide a barrel that holds that accuracy for many more rounds, and perhaps up to three or four times longer than other barrels manufactured today. Their process called Hard Blue brings that innovative difference to the industry.

Matt Young, VP of Superior Barrels.

John Hearn, the president of Superior Barrels, was previously a former rocket-scientist type who worked for a major defense contractor and the victim of company downsizing and career changing in mid-life. Being forced into this transition, he chose the honorable path as that of a firefighter. After the events of 9/11, he started focusing his attentions towards gun barrel designs. With his background expertise in aerospace structures and advanced materials, his company is using similar metallurgical processes to improve a gun barrel’s ability to withstand the degrading effects of high temperatures and throat erosion that result from prolonged rapid firing.

Despite what the evening news reports, and the ever-tightening economic situation the country faces, one thing that remains constant and sometimes “under the radar” is that the aircraft and space industry continue to push the technological envelope in the development of specialized materials and advanced structures. Without these materials advances, the performance of our modern military hardware would not be where it is today. Metallurgy science is generally a boring subject for the best of us; however if there is a better mousetrap out there, the spin-offs from military research and development are of obvious interest to the small arms industry.

Bullets arriving sideways on target indicated this barrel was done for the day. Smoking barrels were the norm during 1,000-round test.

Mr. Hearn’s previous career in the rocket world focused on refining high temperature materials, and being a shooter, he knew there was potential for utilizing similar technologies in gun barrels. His initial investments and experimentations culminated during 2004, when the company started producing AR-15/M16 variant barrels that last an exceptionally long number of rounds, without the typical degradations in accuracy experienced over time. They currently estimate that their AR barrels will provide up to three or possibly four times the barrel life of what has become the accepted standard, perhaps providing acceptable accuracy up to 20,000 rounds.

Typical Superior Barrels rifle configuration as used for testing and evaluation.

During initial meetings with the company, they displayed one of their AR-15 rifles that had 2,000 documented rounds fired with essentially zero throat erosion, and another one with 4,000 rounds with 0.01 inches (0.254 mm) of throat erosion. Most heavy-triggered machine gun enthusiasts know first hand the effects that high temperatures have on barrel degradation and resulting accuracy loss, so the obvious benefits that their process could add to the shooting industry are substantial. One major company goal is to provide their product for the military, to assist those serving our country in harms way delivering bullets to intended targets with long lasting accuracy.

So what is “Hard Blue?”

In general terms, Hard Blue is a collection of processes that optimizes steel’s toughness by increasing the barrel bore durability without changing the dimensional properties. Superior Barrels reports that their process eclipses nitro-carburizing, and understandably, they will not divulge the exact details of their formula. It is not related to “electro-polishing” or other previously marketed products that have cropped up over the years. They have spent quite a lot of their resources perfecting Hard Blue, and since they are now producing the resulting products, they do not want to let the exact specifics of their success out for general knowledge. That being the case, we can look closely at data, and make some conclusions from the vantage point of performance.

Before the skeptics rise up and start throwing rocks, know that after carefully testing and firing several thousands of semiautomatic and full automatic rounds through their barrels, the initial results show that Hard Blue does significantly reduce normally observed wear rates. Besides a much longer barrel life, additional benefits include outstanding accuracy, superior corrosion resistance, and enhanced ease of cleaning. Accepting that questions would arise from their product claims; Superior Barrels provided several range demonstrations that included side-by-side comparisons of both a treated and untreated barrels. The company has provided those with open skepticism a “let us show you” attitude, and let the range results speak for themselves.

Thermal erosion is the main enemy when it comes to running bullets thru a barrel at rates that exceed the system’s thermal limits. In many machine gun barrels, chrome lining the bore is the accepted practice to increase lubricity and corrosion resistance, and to reduce wear rates. Unlike chrome lining, Hard Blue does not alter the bore’s dimensions, and a Hard Blue processed barrel shows much greater corrosion resistance than one without it. It leaves the exposed metal surface so tough, even running a metal file it across the surface multiple times will leave no visible scratches.

Show Me…

Range tests were set up comparing a Hard Blue treated and an untreated barrel. Baseline accuracy would be determined with several ammo types, followed with a “torture test” that would include full automatic firing of 1,000 rounds in a very short time-span to maximize peak temperatures. Afterwards, bore conditions would be carefully measured and wear differences verified. A final accuracy test would provide additional useful data. Baselines were established and are outlined below:

  • Full Automatic Test: Using new & unfired 4140 chrome moly barrels from the same manufacturer and identical configurations, fire 1,000 rounds through each barrel at the same relative rate to achieve very high temperatures and potentially erode the barrel to the point of failure.
  • Before & After Data Gathering: Borescope examinations provided by third party participant Mark Humpreville. Mark is a High Master, a Distinguished Rifleman, Member of the Presidents Hundred, and winner of the Palma Individual Trophy in 1985 and 1986. Accuracy testing observed and verified via other third party observers.

100 yard (91 meters) accuracy baselines were established using Federal Match 69-grain, Hornady 53-grain, and Swiss GP90 ammunitions. Each barrel had five fouling shots fired, and then two groups of ten shots printed for measurements. The next ammunition type underwent the same process. Afterwards, each barrel was carefully examined and throat dimensions recorded. The return trip to the range was dedicated to the firing of 1,000 rounds thru each barrel.

Full auto firing started out via the emptying of fully loaded Beta C-Mags, followed by using 20 and 30-round magazines for the duration. Rates of fire were continuous and abusive, allowing the barrels to achieve temperatures near the melting of gas tubes. When gas tubes started to glow red, cycle rates were slowed to allow some cooling time between magazine changes. The untreated barrel ran into trouble before it completed the test. At approximately 800 rounds, bullets started key holing into the targets. Near round 850, the gun totally stopped functioning and a quick check determined it would not get back in action. Conversely, the Hard Blue treated barrel made it to the 1,000 round mark without any indications of key-holing or other malfunctions.

After cooling, visual inspection indicated no component failures on either barrel. Both gas tubes stayed intact. The severe key holing of the untreated barrel right before stoppage might have been the early indication of loss of sufficient gas pressure to cycle the gun. Post throat erosion measurements were interesting indeed, with the untreated barrel completely swallowing the gage, and the treated barrel indicating 0.10 inches (2.54 mm) of erosion. Within the scope of this test, it was evident that Hard Blue had a significant impact on reducing wear-rates at high temperatures.

1. “Fire-to-destruction” testing is an interesting process to learn how firearms react under extreme conditions. Previously documented tests by the U.S. Army Armament Research, Development Engineering Center (ARDEC) have indicated that M16/M4 military barrels destructed as their temperatures reached up towards 1,700 degrees Fahrenheit (927 degrees Celsius) during full auto firing. (ARDEC Report No. AMSTA-AR-ES-96-2. Fire to Destruction Test of 5.56mm M4A1 Carbine and M16A2 Rifle Barrels – Final Report, September 1996.) Barrels fail due to the structural changes that occur at those temperatures. How a Hard Blue treated barrel would do under these exact testing conditions would no doubt be interesting and a worthwhile endeavor. However interesting that might be, Superior Barrels focus is not the making of machine gun barrels. The demonstration and data generation herein provides a starting point for comparison and showing several advantages of Hard Blue. Their current product offerings include making barrels for the semiautomatic rifle, however more research and development is ongoing in different areas. Some of these areas include treating .308 rifles and pistol barrels.

Additional Post Processing & Damage Assessment

Detailed third party borescope examinations of the untreated barrel revealed throat erosion normally seen only beyond the end of a barrel’s useful life. The rifling was completely gone at least 1 inch (25.4 mm) forward from the end of the chamber. “Heat Checking” (a pattern of parallel surface cracks that are formed by alternate rapid heating and cooling of the surface metal) on the lands and grooves was visible for at least half the barrel length. The barrel was unsalvageable by any stretch of the imagination.

The Hard Blue barrel still showed marks that the factory chamber reamer left in the throat. Normally, such marks disappear in 150 to 200 rounds; however, this barrel still had them after the firing of 1,000 rounds. There was a very light trace of Heat Checking for a short distance forward of the chamber, estimated to be between 5% and 10% of what the untreated barrel exhibited. After recording internal measurements, subsequent range tests showed the barrel still produced excellent accuracy, and is probably quite capable of continued service life. Baseline 100 yard (91 meters) groupings showed essentially no change, that being 1.53 inches (38.9 mm) before, and 1.58-inches (40.1 mm) afterwards.

Where’s the Beef?

Time will tell if the Superior Barrel Hard Blue process takes hold and makes a significant impact on the industry. At the time of this writing, end users within the US SOCOM (Special Operations Command) and the D.O.E. (Dept of Energy) have obtained several barrels in various profiles. Other entities include a U.S. Army R&D unit evaluating several chambered in 6.8 SPC. Now that the product is getting into these hands, there should be additional information forthcoming as to how they are performing under demanding conditions.

Additional evaluations have continued using one of their .223 uppers during a three-day SWAT sniper course. Delivered with an 18-inch (457 mm) Lothar Walther match barrel adapted with a Daniel Defense handrail and a full automatic bolt carrier, the barrel was threaded for use of a suppressor. Placed on a Rock River Arms lower and mounted with a Leupold 4.5-14×40 Long Range scope atop Mk 4 rings/base, the first eight rounds fired from this platform produced a 100-yard (91 meters) group that measured 0.62 inches (15.8 mm).

Copious amounts of Black Hills ammunition of varying bullet weights were fired through this gun with almost all of them consistently printing MOA or better. With a suppressor, the mid-length barrel favored a couple of the Black Hills factory loads, and produced outstanding and repeatable performance with their 50-grain VMAX and 73-grain Berger bullets. At 300 yards (274 meters), the 50-grain VMAX load continued to deliver repeatable MOA accuracy. Heavier 73-grain Moly (USMC) and 73-grain Berger routinely produced 1/2 inch (12.7 mm) or better 5 shot groups at 100 yards (91 meters). After a long day at the range, the bore cleaned up squeaky clean of fouling after the passing through of only five or six solvent-soaked patches.

Leupold optics and Black Hills ammunition helped deliver outstanding accuracy.

It is what it is…

With the price of ammunition being what it is, most folks might agree they need to make every shot count these days. These initial evaluations of Superior Barrels products indicate several significant advantages over the norm, and are available for the shooting world at a very reasonable cost. Most of us would consider the product a bargain when you factor in prolonging the accurate life of a rifle barrel. The motivation behind the company appears to be a good one and they are committed to and stand behind their product.

Sources:

Superior Barrels
P.O. Box 6
Lebanon, GA 30146
www.superiorbarrels.com

Black Hills Ammunition
P.O. Box 3090
Rapid City, SD 57709
http://www.black-hills.com

Leupold & Stephens
Beaverton, Oregon 97006
www.leupold.com

This article first appeared in Small Arms Review V12N11 (August 2009)

Author

  • SAR Staff
    SAR Staff

    View all posts
Tags: 2009John HearnMark HumprevilleSteve BaughmanSuperior BarrelsV12N11
Previous Post

THE POLISH WZ 63 SUBMACHINE GUN

Next Post

“HOMEBUILDING” A SEMIAUTOMATIC VICKERS

Next Post
“HOMEBUILDING” A SEMIAUTOMATIC VICKERS

"HOMEBUILDING" A SEMIAUTOMATIC VICKERS

TRENDING STORIES

  • VALKYRIE ARMAMENT BELT-FED CONVERSION

    VALKYRIE ARMAMENT BELT-FED CONVERSION

    0 shares
    Share 0 Tweet 0
  • EAST GERMAN WIEGER STG RIFLE

    0 shares
    Share 0 Tweet 0
  • The Complete Guide To Colt M-16 Models: Part I

    0 shares
    Share 0 Tweet 0
  • Forgotten M16A1 Rifle Manufacturers: GM/Hydra-Matic and Harrington & Richardson – Part I

    0 shares
    Share 0 Tweet 0
  • The Second Generation AR57: Drop-in 5.7 Upper For Your AR

    0 shares
    Share 0 Tweet 0

RECENT POSTS

SIG Sauer’s Full-Size Compact P365 “Fuse”

SIG Sauer’s Full-Size Compact P365 “Fuse”

June 27, 2024
The Importance of Offhand Shooting

The Importance of Offhand Shooting

June 25, 2024
BOOK REVIEW – The Collector’s Guide to the SKS

BOOK REVIEW – The Collector’s Guide to the SKS

June 20, 2024
True to Form: The Tisas 1911A1 ASF

True to Form: The Tisas 1911A1 ASF

June 18, 2024
Setting the Record Straight on the Fedorov Avtomat

Setting the Record Straight on the Fedorov Avtomat

June 6, 2024

QUICK LINKS

  • About Chipotle Publishing
  • About Small Arms Review
  • Advertise with Us
  • Write for Us

CONTACT DETAILS

  • Phone: +1 (702) 565-0746
  • E-mail: office@smallarmsreview.com
  • Web: www.chipotlepublishing.com
  • Chipotle Publishing, LLC 631 N. Stephanie St., No. 282, Henderson, NV 89014
Small Arms Review

FOLLOW US

  • Privacy Policy
  • Disclaimer

© 2022 Chipotle Publishing | All Rights Reserved

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

No Result
View All Result
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
      • Volume 2
      • Volume 3
      • Volume 4
      • Volume 5
      • Volume 6
      • Volume 7
      • Volume 8
      • Volume 9
      • Volume 10
      • Volume 11
      • Volume 12
      • Volume 13
      • Volume 14
      • Volume 15
      • Volume 16
      • Volume 17
      • Volume 18
      • Volume 19
      • Volume 20
      • Volume 21
      • Volume 22
      • Volume 23
      • Volume 24
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Events
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal

© 2022 Chipotle Publishing | All Rights Reserved

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.

Redirecting to External Website

You are leaving the Small Arms Review website and will be redirected to an external link in a 5 Seconds.
VISIT NOW!