Small Arms Review
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Podcast
  • Newsletter
  • Events
  • FrankenGun Challenge
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Podcast
  • Newsletter
  • Events
  • FrankenGun Challenge
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
No Result
View All Result
Small Arms Review
No Result
View All Result
Home Articles

ROBINSON’S MODEL 11

SAR Staff by SAR Staff
August 2, 2022
in Articles, Articles by Issue, Guns & Parts, Manuals, Search by Issue, V7N12 (Sep 2004), Volume 7
ROBINSON’S MODEL 11
Share on FacebookShare on Twitter

By N.R. Parker

In 1943, Russell S. Robinson started the design and development of what many would consider to be a proper machine pistol, i.e. a pistol that would fire automatically yet having recoil so low as to be controllable in this mode of fire. The Model 11 is not a true Constant Reaction gun in which the barrel, extension and bolt are used to pre-absorb recoil, but uses the slide or jacket to provide all of the inertia. This is a unique approach to solving the problems of firing in full automatic with a weapon the size of a Colt M1911A1.

The Model 11 employs two distinct principles: firstly to smooth out the rearward recoil kick and secondly, to smooth out the torque impact resulting from spinning the projectile to about 1,500 rpm which disturbs aim in a light hand held weapon. The second principle involves rotating the barrel while the slide is moving forward, with the rotation of the barrel in the same direction as the spinning projectile. While we will examine in detail the operation and design of the Model 11 later on, we will first take a look into the history of its development, and what role Russ Robinson had in mind for the Model 11 when designing and developing it. It turns out that this was the role of a Personal Defense Weapon (PDW) long before the concept of a PDW came into vogue.

Robinson Model 11 stripped down to the major components: slide, barrel bushing, combination safety and fire selector, barrel, yoke, magazine and receiver/frame. Photo Credit: Australian Army Engineering Agency

Inspiration from the Gatenby .45

In 1942, an Australian named Gatenby submitted to the Australian Army Inventions Directorate (A.I.D.) for evaluation a very unusual .45 caliber Machine Carbine/Pistol. Intrigued, the A.I.D. sought a version in 9mm for evaluation and Robinson, at the time involved in firing-range tests of his Model 5 Cal. .50 machine gun, was contracted by the A.I.D. to design a version in 9mm.

The Gatenby gun fed rearward out of the magazine, with a fixed buttress on the pistol grip having a fixed firing pin. A sliding barrel was used with about 1.5 inches of movement. When a round was chambered and fired, the force of engraving and friction of the bullet in the rifling carried the barrel forward against a stiff spring, with a spring-biased extractor in the buttress holding the fired case against the breech face. A fixed ejector spun the empty case off the breech face after the barrel had moved forward about 1.25 inches. Hitting a forward stop at its forward limit of movement, the barrel returned rearward, with a fixed finger under the barrel striking the point of the next cartridge in the magazine. This thrust the cartridge rearward against a ramp that guided it upwards, and, simultaneously, the recoiling barrel pushed the point of the cartridge upward and chambered.

Top – Combination safety and fire selector in safe position
Center -Combination safety and fire selector in semi-auto position Bottom – Combination safety and fire selector in full-auto position. Photo Credit: N.R. Parker

Problems with feeding reliably due to insufficient support of the cartridge while the barrel moved rearward, as well as the heavy recoil, made the Gatenby very difficult to control in a full-auto burst mode. The heavy recoil was due to a combination of the simultaneous recoil shock of ignition and the shock of the returning barrel hitting the fixed breech face.

Robinson designed two variants of the 9mm Gatenby, these being known as the Models 8 and 10. While the Gatenby did not continue any further, it did impress Robinson with some aspects of the design. He initially considered that the Constant Reaction principle was only applicable to .30 caliber and larger, but the Gatenby concept inspired him to apply a variation of the principle to a light weight gun. He felt that a cyclic rate of 600 rpm, with continuous recoil of 5.2 pounds, with the recoil varying about 1.75 pounds, would result in an accurate one-hand held machine pistol. The end result was the S.R. Model 11 9mm Machine Pistol.

Top view of receiver showing trigger and fire selector mechanism. Photo Credit: Australian Army Engineering Agency

Development and design of the Model 11

Conceived in early 1943, the drawings were finally completed by March 1944, and construction was approved in November 1944. Major modifications to the design were necessary due to Russ Robinson’s failure to realize that when the slide struck the barrel via the chambered case, substantial energy was lost in getting the six ounce barrel up to slide speed. As a result of this failure, six ounces had to be added to the slide weight at the rear to compensate. These modifications and redesign were finished by mid February 1945. By early September 1945, major components had been fabricated at the Small Arms Factory (SAF), Lithgow and the prototype gun had fired some 1600 rounds in tests.

The S.R. Model 11 9mm Machine Pistol was designed to initially meet some 13 specifications laid down in 1943 following the advice and assistance of Major J.E.M. Hall, then chief of the Army Small Arms Branch, Directorate of Artillery. One requirement that could not be met was the weight, as the slide alone had to weigh one pound. Additional recommendations and suggestions were made by Australian Army and R.A.A.F. service personnel returning from fighting overseas and later by the Canadians. In this revised list of specifications, numbering 24 in total, the weight was increased.

Right hand view of Robinson Model 11 with slide in forward position and showing magazine, holster and tubular shoulder stock in extended position. Photo Credit: Australian Army Engineering Agency

While some of the 24 specifications laid down have been examined in an article from the now defunct Fighting Firearms, (Summer 1996, Constant Reaction Guns II), let us look again at some of the more interesting. These are as follows:

  1. Cyclic Rate of 500-600 rpm;
  2. Weight not to exceed 2.5 pounds;
  3. Provision for automatic ejection of empty magazine from gun;
  4. Safety and fire-selection controls must be conveniently located and designed for immediate operation by right and left trigger finger only;
  5. Recoil force to be smoothed out to permit accurate auto or semi-auto fire single handed;
  6. Except for pushing home successive magazines, no handling or operational function to require a second hand;
  7. The action to be kept in a cocked mode upon termination of burst fire as well as ejection of the magazine; and
  8. Magazines to be made as expendable as possible.
Modified Robinson M11 with extended tang and heavy slide. Note markings on slide signifying places of manufacture. Photo Credit: Russ Robinson

Some of these requirements and features had never been seen before such as the automatic ejection of magazines when empty. Alternative feed systems were mentioned in place of the magazine. For example, a flexible feed system was proposed feeding through the pistol grip though nothing came about from this proposal. The auto-ejection of empty magazines, coupled with the retention of the gun in a fully cocked position, allowed for a very short time break in firing estimated to be about 0.5 second. The only movement required to re-commence firing was the pushing home of the new magazine. This feature resulted from advice from Australian soldiers fighting in the jungles of New Guinea.

During a trip to Canada, on the way home from the UK in 1945, Russ Robinson visited Small Arms Ltd. and John Inglis Co., Ltd., the latter being manufacturers of the GP35 Pistol and the BREN. Both of these manufacturers expressed a great deal of interest in the Model 11. Colonel Jolley, the Manager at Small Arms Ltd., suggested that a light holster or combination holster/shoulder stock be developed, similar to that of the Mauser Broomhandle and the FN GP35, to enhance the effective range of the Model 11. However, a simple tubular telescoping stock was eventually designed and manufactured, which was attached to the pistol via a tapped hole in the frame. The holster ended up being made of canvas with a separate slip to accommodate the telescoping stock.

When Russ Robinson returned to the UK in the latter part of 1945, he took with him a number of S.R. Model 11 Machine Pistols complete with tubular stocks and canvas holsters. These guns were then later modified after tests in 1946. While these tests were carried out by the UK Ordnance Board, in another ironic twist, the trial report was signed by Major J.E.M. Hall, the Australian Army officer whose advice led to specifications for a 9mm machine pistol being laid down in Australia and ultimately resulted in the development of the S.R. Model 11. Major Hall had been transferred to the UK to work on various small arms projects, and was in charge of a design team working on the .280 rifle project.

The S.R. Model 11, in its initial form, resembled a normal semi-automatic pistol, with the exception of the grooves machined into the exterior of the long barrel. Conducting further research for this article proved the old adage that “hands-on” research provides new insights into a subject. Up until now, it was commonly believed that only four S.R. Model 11 9mm Machine Pistols, including the prototype, were manufactured at SAF Lithgow, though there were some references in official files to a fifth gun being manufactured for spares only. The fifth gun was recently discovered in an official collection in Australia, and it is in an unmodified condition, unlike the other existing Model 11 guns that were modified in England. With the number 5 marked on the slide, it appears that this gun was assembled at SAF Lithgow, and somehow ended up in this official collection along with a modified Model 11 that is now in another official collection within Australia. This discovery allows us to view for the first time what the original Model 11 looked like prior to being modified in England. The markings on this fifth gun match those shown in the original drawings, and the differences between the unmodified and modified specimens are quite striking. The most obvious difference is the extended tang on the pistol grip while the modified slide is longer, heavier and has different markings.

Demonstration firing of Robinson M11 sans stock. Photo Credit: Russ Robinson

Trials and Tests in the UK

In 1946, the Model 11 underwent sand and mud tests at Enfield held in conjunction with accuracy tests. Major Hall ran these trials, and the accuracy tests produced some interesting results. The Model 11 was found to be more accurate in full-auto fire than the Sten Mk V and the Polish-designed Machine Carbine Experimental Model (MCEM), which is believed to be the MCEM 2. Both the Sten Mk V and the MCEM 2 were used as controls in both the accuracy and sand/mud tests. The accuracy tests showed that the Model 11 was not as accurate as the two control guns in semi-auto fire. The sand and mud tests showed some problems with the change lever and also clearance between the magazine and the housing had to be increased slightly.

Russ Robinson’s work for the British at the time concentrated more on machine guns so the Model 11 received only spasmodic attention to improve the design. After carrying out their initial tests, the Ordnance Board (OB) felt that if it looked like a pistol, was carried like a pistol in a holster, was used like a pistol, and its weight was like a pistol, then it should shoot like a pistol in semi-auto fire. The OB advised Robinson that the gun should be re-designed so that it would provide accurate semi-auto fire but at the same time maintain the accuracy levels achieved with full-auto fire. This was easier said than done, as it would require a major re-design of the Model 11 to allow semi-auto fire from a front sear position, and a change from a fixed firing pin to a more conventional floating firing pin. Robinson looked at this, and this re-design was known as the Model 16. Unfortunately, the Model 16 was never built, with the exception of some firing fixtures.

In 1948, Robinson experimented with heavy alloy metals to try and increase the weight of the slide without making the gun more bulky. Using an alloy made by General Electric Company known as “Heavy Alloy”, which was 50% heavier than steel, new slides were manufactured which were slightly thicker and longer than the original slides. Modifications to the frame included welding an extension to the tang of the frame. Slides were manufactured and fitted to the Model 11 guns that Robinson had brought with him from Australia, and it was envisaged that further tests would result in a total re-design and lead to further manufacture. These tests never occurred because Russ Robinson moved to the United States, and the British had by then adopted the Patchett submachine gun.

Demonstration firing of Robinson M11 with stock. Photo Credit: Russ Robinson

Operation of the Model 11

The S.R. Model 11 is a very simple gun with a total of just 22 parts including checkered wooden grips and screws. It has a floating barrel that is the secret of the low recoil force in the various machine pistols designed by Russ Robinson. The floating barrel enabled the forward momentum of the slide to be fully harnessed to pre-absorb almost half of the recoil. The automatic ejection of the magazine is accomplished by an ejection system that is triggered when the rising magazine follower strikes the magazine retainer when it rises to the top of the magazine. The release of the magazine retainer permits the magazine ejector to thrust the magazine downward and out of the butt. At the same time, a heel on the ejector rises and holds the slide slightly to the rear of the sear position. When a loaded magazine is thrust in place, the magazine ejector is rocked upward by the rear wall of the magazine and its heel is withdrawn allowing the slide to move forward .025 inches to rear (cocked) position, and the gun is ready to fire.

When the trigger is pressed, the slide is accelerated forward by the driving spring, the rear end of which bears rearward against the barrel and holds it against its rear stop. As the slide moves forward, it forces the barrel to rotate at a fairly constant angular speed by the grooves in the slide nut engaging the external grooves on the barrel. By the time the slide reaches forward or firing position, the rotational energy of the barrel is about one half that of the fired bullet. When the fixed firing pin of the slide strikes the primer and ignites the charge, a very slight delay occurs while combustion fully develops. At the speed the slide is moving, it wants to move about .030 inches before the recoil is sufficient to arrest and then reverse the motion of the slide. Because of this delay, the slide is arrested in 9mm weapons not by recoil, but by the slide striking the fixed barrel and frame via the fully chambered cartridge case. The greater part of the forward energy of the slide is dispersed into the frame or pistol grip. In order to make the forward energy or movement of the slide fully available to pre-absorb almost one half of the recoil, the barrel of the Model 11 is allowed to slide forward with the slide.

As the bullet leaves the muzzle it has about twice the rotational energy as that of the rotating barrel, so the barrel rotation is arrested and reversed by the rotating bullet. But as the slide moves rearward, the barrel’s rotation is decelerated so that the decelerating torque is in the same sense as the accelerating torque when the slide is going forward. Thus the heavy torque impulse to spin the bullet is replaced by a continuous very small torque which is applied throughout the entire cycle of fire, and which is too small to affect aim during automatic firing.

Each cycle of fire in the Model 11 is followed by a small cushioned blow of the slide against the rear buffer of the pistol grip, which represents a reserve of energy to provide for elevated firing or firing under foul conditions. The blows against the buffer can be felt, but they are very small compared with usual 9mm recoil. The Model 11 was not a true constant reaction gun but it employed a combination of the constant reaction principle with rotating the barrel in the direction of projectile spin, and recoil was reduced greatly by this unique combination. Robinson found that the rapid firing of the gun produced a succession of reactive torque impacts upon the gun, thus affecting accuracy. There is a tendency for such a firearm to react with non-axial twisting pulses. And if these impacts could be cushioned so that the impact is applied to the gun over a long time, then the effects on accuracy due to imparting bullet spin in a very light weapon can be virtually eliminated. The selector mechanism used with the Model 11 is a simple three-position system. The selector is ambidextrous and can be used with either trigger finger. The full-auto position is when the selector lever is fully up and parallel with the slide. Moving the selector lever downwards about 20 degrees clicks it into semi-auto position; and in the safe position the selector lever is fully down and blocking access to the trigger while internally locking the sear.

Ejection of empty cases is via an ejection port in the top of the slide. With the exception of a magazine change, all operations necessary to use the gun require only one hand, thus meeting a major specification laid down back in Australia. Magazine capacity was 14 rounds for the initial holster friendly magazine, and 30 for the subsequent magazines.

Patent drawing showing the Robinson M11 and an alternate version that did not use helical grooves on the exterior of the barrel. Credit: U.S. Patent and Trademark Office

The Model 11 U.S. Patent

In 1970, Russ Robinson applied for a U.S. Patent on the concepts he developed with the original Model 11, with the U.S. Patent Office granting the patent on June 12, 1973. The patent disclosed two different approaches to the original ideas as used in the original Model 11, and the additional approach is worthy of some discussion.

The original approach is disclosed though with some differences from the actual Model 11. Rather than have the recoil spring positioned around the barrel as in the actual Model 11, the patent disclosed having the recoil spring being positioned below the barrel. It is believed that this approach was used in the design of the later Model 16. Another difference disclosed in the patent involved the addition of a ring of a resilient material, such as synthetic rubber, to the forward bearing surface between the slide and the external helical grooves in the barrel. This feature was included specifically for the Model 11 as a “…type of firearm…in which a short dwell time occurs in the movement of the slide after it has completed its counter recoil movement and before it receives its recoil movement…”

The alternate embodiment disclosed in the patent was for a firearm with a rotating barrel and two bearings, one at the front of the barrel and the other at the rear, the rear bearing being positioned in the receiver of the firearm. The design allowed for the barrel to be restrained from longitudinal movement, but allowed for the unobstructed rotation of the barrel within the receiver and within the constraints of the two bearings. The receiver included a saddle at the front of the receiver with a friction clip or clamp as a part of the saddle. The friction clip or clamp utilized a simple tension screw that was threaded into a threaded hole in the saddle.

Tightening the screw increased the clamping action of the friction clip and increased the torque resisting the rotation of the barrel with respect to the receiver. When correctly adjusted, the firing of a shot resulted in the barrel being reactively spun by the projectile to an angular velocity in which its angular momentum, less the losses generated by friction, was equal to but opposite to that imparted by the projectile. This resulted in the clamping torque being applied to the barrel so that the barrel was brought to a rest in a period considerably longer than the period of projectile travel in the barrel. Reduction of the torque level and its application to the receiver resulted in the cushioning of the reactive torque impact on the receiver.

Research into the various guns developed by Russ Robinson has failed to find any particular firearm that utilized this version of the invention, and it is believed that this approach was a theoretical design and concept that was never proven in an actual firearm.

The Model 11/16 as a PDW

Examination of personal and official files has shown that, if the problem of semi-auto fire could have been solved quickly, the British would have seriously considered adopting the Robinson gun for use in a multi-purpose role replacing the pistol and the machine carbine. This is the role that Russ Robinson envisioned right from the start for the Model 11, a role now known as a PDW or Personal Defense Weapon.

Initially, the S.R. Model 11 was designed as a standard holster weapon for officers, NCOs, drivers, jungle artillerymen and such, but the fact that it was so light and able to be used with one hand opened up many possibilities for use by other military personnel. Robinson felt that a 2.5-pound 9mm carbine that is normally carried in a holster would be extremely valuable for street and jungle fighting, and night operations. He envisioned that, combining the use of such a weapon with the standard infantry rifle, there would appear to be little requirement for the orthodox type carbine.

The OB was of the opinion that a combination of the self-loading pistol and the machine carbine would be very interesting, but weight would be a major factor. The weight would have to compare favorably with other self-loading pistols for it to be seriously considered. While the weight factor was easily achieved, it was the semi-auto requirement that was awkward to achieve without a major re-design of the gun.

The Model 16 still kept many of the highly desirable features of the Model 11, including one-handed operation, ejection of empty magazines, selective-fire capability, and most critical, a projected weight of 2 pounds 4 ounces unloaded.

The story of the Model 11 finished when Russ Robinson moved to the US, and no further development of the Model 11 or Model 16 occurred. However the specifications laid down for the Model 11 so many years ago mirror, in many aspects, current requirements and operational roles for a PDW/OPW.

Perhaps we do need to reflect upon what has occurred in the past, take heed, and start to break out of the circle that continues in small arms design. Many of today’s so-called advances in small arms have their roots in the past, when lessons were not heeded. Just imagine what would have happened if the British had adopted the Model 11 or 16. Much time, money and effort would not be expended today trying to create a solution that may already exist. In a conversation with Russ Robinson in 1995, he indicated that he would be glad to undertake the design of an improved Model 16 if a firm requirement arose from a responsible source. Regrettably, following his passing away in late 1998, this will not occur. But, perhaps we may still see such a gun incorporating Russ Robinson’s concepts and ideas.

The author wishes to acknowledge the assistance of the following: Australian Army Engineering Agency (A.A.E.A.), (formerly A.T.E.A., Army Technical & Engineering Agency), Maribyrnong, Victoria, Australia; MOD Pattern Room, Nottingham, United Kingdom; the late Mr. Herb Woodend, and the late Mr. Russell S. Robinson in the preparation of this article. Their assistance is gratefully appreciated.

This article first appeared in Small Arms Review V7N12 (September 2004)

Author

  • SAR Staff
    SAR Staff

    View all posts

Tags: 2004N.R. ParkerROBINSON'S MODEL 11SEPTEMBER 2004V7N12
Previous Post

WEAPONS OF THE ELITE GROUND ELEMENTS OF THE CHILEAN AIR FORCE (FACH)

Next Post

THE GURTFULLER 64

Next Post
THE GURTFULLER 64

THE GURTFULLER 64

TRENDING STORIES

  • U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

    U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

    0 shares
    Share 0 Tweet 0
  • Recreational Use Of 40MM Grenade Launchers

    0 shares
    Share 0 Tweet 0
  • Customizing the Already Custom SIG P320 Spectre Comp

    0 shares
    Share 0 Tweet 0
  • Col. Rex Applegate: The Knife Designs of a Close-Combat Legend

    0 shares
    Share 0 Tweet 0
  • Firearm Review: Pioneer Arms Classic AK in 7.62×39

    0 shares
    Share 0 Tweet 0
  • Trending
  • Comments
  • Latest
U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

Recreational Use Of 40MM Grenade Launchers

Recreational Use Of 40MM Grenade Launchers

SIG Spectre Comp with AXG Grip Module

Customizing the Already Custom SIG P320 Spectre Comp

Col. Rex Applegate: The Knife Designs of a Close-Combat Legend

Col. Rex Applegate: The Knife Designs of a Close-Combat Legend

New Review: V19N1

New Review: V23N3

SAR|Special

SAR|Special

The Grand Power Q100

The Grand Power Q100

A Fading Star: The star S135 Submachine Gun, That is

A Fading Star: The star S135 Submachine Gun, That is

The Luger Rifle

Where in the world is the Luger rifle?

Book Reviews: September 2016

BOOK REVIEW: Two Great MP40 Books 

Henk Visser Interview: SAR Talks Stoners, CETME, HK with One of the Founders of the Modern Small Arms Industry

Henk Visser Interview: SAR Talks Stoners, CETME, HK with One of the Founders of the Modern Small Arms Industry

The SCCY DVG-1—The Changer of Games

The SCCY DVG-1—The Changer of Games

QUICK LINKS

  • About Chipotle Publishing
  • About Small Arms Review
  • Advertise with Us
  • Write for Us

CONTACT DETAILS

  • Phone: +1 (702) 565-0746
  • E-mail: office@smallarmsreview.com
  • Web: www.chipotlepublishing.com
  • Chipotle Publishing, LLC 631 N. Stephanie St., No. 282, Henderson, NV 89014
Small Arms Review

FOLLOW US

  • Privacy Policy
  • Disclaimer

© 2022 Chipotle Publishing | All Rights Reserved

No Result
View All Result
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
      • Volume 2
      • Volume 3
      • Volume 4
      • Volume 5
      • Volume 6
      • Volume 7
      • Volume 8
      • Volume 9
      • Volume 10
      • Volume 11
      • Volume 12
      • Volume 13
      • Volume 14
      • Volume 15
      • Volume 16
      • Volume 17
      • Volume 18
      • Volume 19
      • Volume 20
      • Volume 21
      • Volume 22
      • Volume 23
      • Volume 24
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Podcast
  • Newsletter
  • Events
  • FrankenGun Challenge
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal

© 2022 Chipotle Publishing | All Rights Reserved

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.

Subscribe To Our Weekly Newsletter

Are you in the know?
Stay up to date with the latest articles.

Facebook-f Linkedin Instagram

Redirecting to External Website

You are leaving the Small Arms Review website and will be redirected to an external link in a 5 Seconds.
VISIT NOW!