Small Arms Review
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Podcast
  • Newsletter
  • Events
  • FrankenGun Challenge
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
        • V1N1 (Oct 1997)
        • V1N2 (Nov 1997)
        • V1N3 (Dec 1997)
        • V1N4 (Jan 1998)
        • V1N5 (Feb 1998)
        • V1N6 (Mar 1998)
        • V1N7 (Apr 1998)
        • V1N8 (May 1998)
        • V1N9 (Jun 1998)
        • V1N10 (Jul 1998)
        • V1N11 (Aug 1998)
        • V1N12 (Sep 1998)
      • Volume 2
        • V2N1 (Oct 1998)
        • V2N2 (Nov 1998)
        • V2N3 (Dec 1998)
        • V2N4 (Jan 1999)
        • V2N5 (Feb 1999)
        • V2N6 (Mar 1999)
        • V2N7 (Apr 1999)
        • V2N8 (May 1999)
        • V2N9 (Jun 1999)
        • V2N10 (Jul 1999)
        • V2N11 (Aug 1999)
        • V2N12 (Sep 1999)
      • Volume 3
        • V3N1 (Oct 1999)
        • V3N2 (Nov 1999)
        • V3N3 (Dec 1999)
        • V3N4 (Jan 2000)
        • V3N5 (Feb 2000)
        • V3N6 (Mar 2000)
        • V3N7 (Apr 2000)
        • V3N8 (May 2000)
        • V3N9 (Jun 2000)
        • V3N10 (Jul 2000)
        • V3N11 (Aug 2000)
        • V3N12 (Sep 2000)
      • Volume 4
        • V4N1 (Oct 2000)
        • V4N2 (Nov 2000)
        • V4N3 (Dec 2000)
        • V4N4 (Jan 2001)
        • V4N5 (Feb 2001)
        • V4N6 (Mar 2001)
        • V4N7 (Apr 2001)
        • V4N8 (May 2001)
        • V4N9 (Jun 2001)
        • V4N10 (Jul 2001)
        • V4N11 (Aug 2001)
        • V4N12 (Sep 2001)
      • Volume 5
        • V5N1 (Oct 2001)
        • V5N2 (Nov 2001)
        • V5N3 (Dec 2001)
        • V5N4 (Jan 2002)
        • V5N5 (Feb 2002)
        • V5N6 (Mar 2002)
        • V5N7 (Apr 2002)
        • V5N8 (May 2002)
        • V5N9 (Jun 2002)
        • V5N10 (Jul 2002)
        • V5N11 (Aug 2002)
        • V5N12 (Sep 2002)
      • Volume 6
        • V6N1 (Oct 2002)
        • V6N2 (Nov 2002)
        • V6N3 (Dec 2002)
        • V6N4 (Jan 2003)
        • V6N5 (Feb 2003)
        • V6N6 (Mar 2003)
        • V6N7 (Apr 2003)
        • V6N8 (May 2003)
        • V6N9 (Jun 2003)
        • V6N10 (Jul 2003)
        • V6N11 (Aug 2003)
        • V6N12 (Sep 2003)
      • Volume 7
        • V7N1 (Oct 2003)
        • V7N2 (Nov 2003)
        • V7N3 (Dec 2003)
        • V7N4 (Jan 2004)
        • V7N5 (Feb 2004)
        • V7N6 (Mar 2004)
        • V7N7 (Apr 2004)
        • V7N8 (May 2004)
        • V7N9 (Jun 2004)
        • V7N10 (Jul 2004)
        • V7N11 (Aug 2004)
        • V7N12 (Sep 2004)
      • Volume 8
        • V8N1 (Oct 2004)
        • V8N2 (Nov 2004)
        • V8N3 (Dec 2004)
        • V8N4 (Jan 2005)
        • V8N5 (Feb 2005)
        • V8N6 (Mar 2005)
        • V8N7 (Apr 2005)
        • V8N8 (May 2005)
        • V8N9 (Jun 2005)
        • V8N10 (Jul 2005)
        • V8N11 (Aug 2005)
        • V8N12 (Sep 2005)
      • Volume 9
        • V9N1 (Oct 2005)
        • V9N2 (Nov 2005)
        • V9N3 (Dec 2005)
        • V9N4 (Jan 2006)
        • V9N5 (Feb 2006)
        • V9N6 (Mar 2006)
        • V9N7 (Apr 2006)
        • V9N8 (May 2006)
        • V9N9 (Jun 2006)
        • V9N10 (Jul 2006)
        • V9N11 (Aug 2006)
        • V9N12 (Sep 2006)
      • Volume 10
        • V10N1 (Oct 2006)
        • V10N2 (Nov 2006)
        • V10N3 (Dec 2006)
        • V10N4 (Jan 2007)
        • V10N5 (Feb 2007)
        • V10N6 (Mar 2007)
        • V10N7 (Apr 2007)
        • V10N8 (May 2007)
        • V10N9 (Jun 2007)
        • V10N10 (Jul 2007)
        • V10N11 (Aug 2007)
        • V10N12 (Sep 2007)
      • Volume 11
        • V11N1 (Oct 2007)
        • V11N2 (Nov 2007)
        • V11N3 (Dec 2007)
        • V11N4 (Jan 2008)
        • V11N5 (Feb 2008)
        • V11N6 (Mar 2008)
        • V11N7 (Apr 2008)
        • V11N8 (May 2008)
        • V11N9 (Jun 2008)
        • V11N10 (Jul 2008)
        • V11N11 (Aug 2008)
        • V11N12 (Sep 2008)
      • Volume 12
        • V12N1 (Oct 2008)
        • V12N2 (Nov 2008)
        • V12N3 (Dec 2008)
        • V12N4 (Jan 2009)
        • V12N5 (Feb 2009)
        • V12N6 (Mar 2009)
        • V12N7 (Apr 2009)
        • V12N8 (May 2009)
        • V12N9 (Jun 2009)
        • V12N10 (Jul 2009)
        • V12N11 (Aug 2009)
        • V12N12 (Sep 2009)
      • Volume 13
        • V13N1 (Oct 2009)
        • V13N2 (Nov 2009)
        • V13N3 (Dec 2009)
        • V13N4 (Jan 2010)
        • V13N5 (Feb 2010)
        • V13N6 (Mar 2010)
        • V13N7 (Apr 2010)
        • V13N8 (May 2010)
        • V13N9 (Jun 2010)
        • V13N10 (Jul 2010)
        • V13N11 (Aug 2010)
        • V13N12 (Sep 2010)
      • Volume 14
        • V14N1 (Oct 2010)
        • V14N2 (Nov 2010)
        • V14N3 (Dec 2010)
          • Ammunition
        • V14N4 (Jan 2011)
        • V14N5 (Feb 2011)
        • V14N6 (Mar 2011)
        • V14N7 (Apr 2011)
        • V14N8 (May 2011)
        • V14N9 (Jun 2011)
        • V14N10 (Jul 2011)
        • V14N11 (Aug 2011)
        • V14N12 (Sep 2011)
      • Volume 15
        • V15N1 (Oct 2011)
        • V15N2 (Nov 2011)
        • V15N4 (Jan 2012)
        • V15N5 (Feb 2012)
      • Volume 16
        • V16N1 (1st Quarter 2012)
        • V16N2 (2nd Quarter 2012)
        • V16N3 (3rd Quarter 2012)
        • V16N4 (4th Quarter 2012)
      • Volume 17
        • V17N1 (1st Quarter 2013)
        • V17N2 (2nd Quarter 2013)
        • V17N3 (3rd Quarter 2013)
        • V17N4 (4th Quarter 2013)
      • Volume 18
        • V18N1 (Jan Feb 2014)
        • V18N2 (Mar Apr 2014)
        • V18N3 (May Jun 2014)
        • V18N4 (Jul Aug 2014)
        • V18N5 (Sep Oct 2014)
        • V18N6 (Nov Dec 2014)
      • Volume 19
        • V19N1 (Jan 2015)
        • V19N2 (Feb Mar 2015)
        • V19N3 (Apr 2015)
        • V19N4 (May 2015)
        • V19N5 (Jun 2015)
        • V19N6 (Jul 2015)
        • V19N7 (Aug Sep 2015)
        • V19N8 (Oct 2015)
        • V19N9 (Nov 2015)
        • V19N10 (Dec 2015)
      • Volume 20
        • V20N1 (Jan 2016)
        • V20N2 (Feb Mar 2016)
        • V20N3 (Apr 2016)
        • V20N4 (May 2016)
        • V20N5 (Jun 2016)
        • V20N6 (Jul 2016)
        • V20N7 (Aug Sep 2016)
        • V20N8 (Oct 2016)
        • V20N9 (Nov 2016)
        • V20N10 (Dec 2016)
      • Volume 21
        • V21N1 (Jan 2017)
        • V21N2 (Feb Mar 2017)
        • V21N3 (Apr 2017)
        • V21N4 (May 2017)
        • V21N5 (Jun 2017)
        • V21N6 (Jul 2017)
        • V21N7 (Aug Sep 2017)
        • V21N8 (Oct 2017)
        • V21N9 (Nov 2017)
        • V21N10 (Dec 2017)
      • Volume 22
        • V22N1 (Jan 2018)
        • V22N2 (Feb 2018)
        • V22N3 (March 2018)
        • V22N4 (Apr 2018)
        • V22N5 (May 2018)
        • V22N6 (Jun Jul 2018)
        • V22N7 (Aug Sep 2018)
        • V22N8 (Oct 2018)
        • V22N9 (Nov 2018)
        • V22N10 (Dec 2018)
      • Volume 23
        • V23N1 (Jan 2019)
        • V23N2 (Feb 2019)
        • V23N3 (Mar 2019)
        • V23N4 (Apr 2019)
        • V23N5 (May 2019)
        • V23N6 (Jun Jul 2019)
        • V23N7 (Aug Sep 2019)
        • V23N8 (Oct 2019)
        • V23N9 (Nov 2019)
        • V23N10 (Dec 2019)
      • Volume 24
        • V24N1 (Jan 2020)
        • V24N2 (Feb 2020)
        • V24N3 (Mar 2020)
        • V24N4 (Apr 2020)
        • V24N5 (May 2020)
        • V24N6 (Jun Jul 2020)
        • V24N7 (Aug Sep 2020)
        • V24N8 (Oct 2020)
        • V24N9 (Nov 2020)
        • V24N10 (Dec 2020)
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Podcast
  • Newsletter
  • Events
  • FrankenGun Challenge
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal
No Result
View All Result
Small Arms Review
No Result
View All Result
Home Articles

ROBOT WARRIORS

SAR Staff by SAR Staff
August 2, 2022
in Articles, Articles by Issue, Search by Issue, V9N3 (Dec 2005), Volume 9
ROBOT WARRIORS
Share on FacebookShare on Twitter

By Robert Bruce

“The robots will take on forms that will optimize their use for the roles and missions they will perform. Some will look like vehicles, some like airplanes, some like insects or animals or other objects in an attempt to camouflage or to deceive the adversary. Some will have no physical form – software intelligent agents or cyberbots.” Doctor Russ Richards, Director of Project Alpha, US Joint Forces Command

Dawn of the dread. 14 October 2003, Patuxent River Naval Air Station, Maryland. A Navy Fire Scout unmanned helicopter is dramatically illuminated at sunrise. Developed by Northrop Grumman, the robotic rotorcraft is progressing steadily through testing toward deployment in 2007. Freedom’s enemies should take note of the outboard rocket pods on both sides.
(US Navy photo by Kurt Lengfield)
April 2002, Quantico, Virginia. Visiting Marine Corps Warfighting Lab, General James Jones, Commandant of the Marine Corps, views real-time video sent back by a “Dragon Eye” unmanned aerial vehicle through special goggles. The recon aircraft gives company and platoon level commanders the ability to see “over the next hill” during combat operations. (USMC photo by CPL Stephen Volny) Inset is the logo for the Marine Corps’ DRAGON EYE Unmanned Aerial Vehicle program logo.

Editor’s Note: This wraps up Robert Bruce’s three part series on military robots with a quick look at some current systems and then some crystal ball gazing. For those who are wondering why a “gun magazine” is devoting so much space to electromechanical gizmos and gadgets, we offer the observation that men with guns on the battlefield have always dreamed of ways to be more lethal and survivable. For American and allied forces directly engaged in the Global War on Terror, this dream is an immediate practical concern as a matter of life or death. Most all of the technologies in use and in the pipeline to make robots work better also make the common soldier’s weapons better. From all-weather sights to seeker projectiles, from stabilized mounts to directed energy beams, robotic research profoundly influences manportable weaponry. So, consider these articles a preview of what you’ll probably be reading about in SAR a dozen years from now. – Robert G. Segel

This sequence of video frames shows a possible future mission scenario for strike Unmanned Combat Aerial Vehicles armed with Metal Storm weapons pods. Left to Right: A flight of UCAVS responds to a radioed call from forces surrounded by the enemy. A close look at the weapon pods, filled with Metal Storm munitions. The munitions are computer fired with extremely high precision. In just seconds the attacking force is devastated with no collateral damage. (Metal Storm)

They have no fear, they feel no pain. They need no sleep and they don’t complain. They’re dead shots with a variety of weapons in any kind of weather day or night. And – if killed in action – nobody has to write a letter to their families or pay out life insurance benefits. They’re “weaponized robots” and more of them are on the way to the battlefield.

Unmanned minefield breaching. An M113 armored personnel carrier is equipped with mine rollers fore and aft in an experiment with unmanned vehicles for minefield path clearing operations. Its protection against hostile infantry comes from a 7.62mm M240 machine gun mounted on the TRAP-250 remote aiming system. A thermal weapons sight provides day and night aiming capability through a video link to a remote operator. (Precision Remotes)


Nothing New

Unmanned war machines have been around for more than a hundred years. It is said that bomb equipped balloons were launched by both sides in the American Civil War with the object of causing destruction behind enemy lines. Land and sea mines are primitive autonomous weapons, waiting with infinite patience until bumped into.

Built on a modified ATV four-wheeler, FIRE ANT was the first Sandia robot capable of using an autonomous stand-off mine to destroy an enemy’s armor. Once FIRE ANT was teleoperated to a strategic position that overlooked a road, the operator aimed the weapon and set up areas of sensitivity for the video tracking software. It detected and destroyed a remote-controlled tank. Because of the weapon system’s design, the FIRE ANT itself is destroyed in the process. Take time to see dramatic video of this remarkable test at www.sandia.gov/isrc/fireant.html
(Sandia National Laboratories)

The “Kettering Bug,” a bomb-carrying biplane with pre-set robotic controls, was flight tested by Americans late in WWI. German scientists picked up the idea and two decades later were sending robot ramjets against London in the form of V-1 “Buzz Bombs.”

Marsupial robots. Working toward mass employment of robots in future conflicts, Navy engineers at the Space and Naval Warfare Systems Command are developing the MDARS-E (Mobile Detection Assessment Response System-Exterior). The experimental platform seen here is a “mother robot” that carries and delivers a smaller URBOT to the battlefield. Note also the OAV surveillance drone on top. Scientists foresee swarms of mini and microbots pouring over the battlespace to send back reconnaissance reports. (US Navy SPAWAR photo)

In the 1950’s the US Air Force began arming jet fighters with Sparrow AIM-7 rockets, the first “fire and forget” weapons for air-to-air combat. In the Vietnam War “Firebee” AQM-34L recon drones saved countless numbers of American airmen by flying photo and electronic recon missions over Hanoi and Haiphong. It proved particularly useful at pinpointing both conventional anti-aircraft weapons and the increasingly deadly surface-to-air missiles supplied by the Soviet Union.

The Tomahawk Cruise Missile, initially fielded in 1983, is still flying extraordinary distances over hostile terrain to deliver high explosive payloads with pinpoint accuracy.

Building on the work of Israeli forces in the use of very small recon aircraft, America adopted the Pioneer UAV in time for the 1990-91 Gulf War. There, the 416 pound drone earned the distinction of being the first robot to accept the surrender of enemy combatants.

“The USS Wisconsin deliberately flew its Pioneer low over Faylaka Island. When the Iraqi defenders heard the sound of the UAV’s two-cycle engine, they knew they were targeted for more naval shelling. The Iraqis signaled surrender by waving handkerchiefs, undershirts and bed sheets.” American Forces Press Service

Why Robots?

The United States Armed Forces enjoy significant technological superiority over current and near future adversaries. This, serving highly trained and motivated warfighters, enables Americans to dominate almost any battlespace day or night and in any weather. But too many of the tasks that must be performed involve putting humans at unnecessary risk. Of course, combat has always involved degrees of risk and resulting casualties, but there is no excuse for sending men into a meat grinder when machines will do as well or better.

CROWS, the Common Remotely Operated Weapon System, features servo controls and sophisticated electro optics that allow a gunner seated safely inside an armored vehicle to identify and engage targets at long range day or night. The CROWS mount is likely to be a key part of most near-term robotic recon vehicles, sending real time video by radio link to human controllers in the rear areas. This one is armed with the venerable .50 caliber M2HB machine gun. Other machine guns can be mounted as well as grenade and rocket launchers.
(US Army PEO Soldier)

Robots in their many current and emerging forms offer a lot to human counterparts in the combat zone. Just about any tactical task – from hauling supplies, to reconnaissance, to the application of lethal force – is now or will soon be done in part or in whole by machines.

A tremendous variety of robots are working right now for American land, sea and air forces. Some of these include crawlers like MATILDA and TALON (recently equipped with weapons), rollers like DRAGON RUNNER, flyers like PREDATOR, and swimmers like RMS. But, as they say, “we ain’t seen nothin’ yet….”

Submarine cyborg. 13 December 2002. The Remote Minehunting System (RMS) is a robotic submersible that will search programmed sectors for enemy mines, then kill them using what appears to be a mini-torpedo. This will relieve humans from the dangerous task of traditional minesweeping using ships. (US Navy/Lockheed Martin)

The Science of War

The Defense Advanced Research Projects Agency (DARPA) is central to the application of existing and emerging scientific knowledge to every aspect of human conflict. Its mission is to maintain the technological superiority of the U.S. military and prevent technological surprise from harming our national security. This is done by sponsoring “high payoff research” that bridges the gap between fundamental discoveries and their military use.

A quick glance at some recent programs launched by DARPA, just in the area of Urban Warfighting, shows how cutting-edge science is being applied to some very practical military uses. Contractors have been given six to twelve months to present “feasibility demonstrations” for 36 highly intriguing concepts, including these with distinctly robotic overtones:

The concept of sophisticated robotic weaponry is nothing new as evidenced by this photo of Kettering Aerial Torpedoes during field testing by the Dayton-Wright Airplane Company during the last year of World War One. Carrying 180 pounds of high explosive, this 12 foot long unmanned biplane was flown and guided to its target by a remarkable contraption of pre-set vacuum and electrical controls. After a set time of flight the engine was shut off, the wings automatically detached and the Torpedo bomb fell to earth, detonating on impact.
(US Air Force Museum)
  • Firefight Aerial Sensor and Mapper
  • Air-Dropped Vertically Traversable Unmanned Ground Vehicles
  • Electroadhesive Wall-Climbing Robot for Three Dimensional Mobility in Urban Environments


“Potential applications for such robots… include surveillance, reconnaissance, pathfinding, deception, weapon delivery, transporting artifacts, and small scale actuation. Applications may include minefield detection wherein small sensors are mounted on hopping robots or robots with multi-task capabilities, intelligence gathering in city pipelines, robots in large numbers for decoy applications, or extremely small robots that might be injected and pick a door lock.” DARPA Distributed Robotics Overview

DARPA’s Distributed Robotics Program is looking for revolutionary approaches to extremely small robots, reconfigurable robots, systems of robots, biologically-inspired designs, innovative methods of robot controlling including innovative interfaces, and methods of implementing pooled capabilities and/or layered intelligence. We can get a better idea about what all that means by looking at some specific projects funded by DARPA and actually being worked on right now by various groups in industry, academia and high-speed science labs.

Micromachines are pretty small! So tiny that it requires a scanning electron microscope to see it, a spider mite approaches the gear chain for a micro-electronic machine under development at Sandia. Manufacturing techniques to mass produce these and even smaller parts are moving rapidly ahead, eventually producing microscopic “NanoBots.”
(Sandia National Laboratories)
Iraq, 2004. A convoy of up-armored Humm-Vees equipped with CROWS mounts prepares to move out. The first two in line have 40mm Mark19 grenade machine guns on top and the third has a .50 caliber M2HB. An exposed soldier riding “shotgun” in the first vehicle mans an M249 Squad Automatic Weapon, providing quick-reaction, close-in protection. The rugged and effective CROWS mount is likely to be a key part of most near-term robotic recon vehicles, sending real time video by radio link to human controllers in the rear areas.
(US Army)
  • Robot Sentries. “Sandia’s Intelligent Systems & Robotics Center is developing and testing a robotic perimeter detection system for Small Unit Operations. The objective is to demonstrate the viability of using a cooperative team of robotic sentry vehicles to investigate alarms from intrusion detection sensors. This cooperative team concept can significantly reduce the workload and increase the effectiveness of a single warfighter in the battlefield. ”Sandia National Laboratories
  • Autonomous Army Ants. SWARM (Smart Warfighter Array of Reconfigurable Modules) “DARPA Software for Distributed Robotics (SDR) program is developing robot behavior and software to enable very large groups of very small, very inexpensive robots to perform useful tasks. SDR will allow human operators to control robot ‘swarms’ without having to consider what each individual robot is doing. ”DARPA Strategic Plan
  • Combat Crabs. “Modeled after a crab, Aerial II ALUV (Autonomous Legged Underwater Vehicle) is designed to remove mines and obstacles on land and underwater in the surf zone. Its unique brand of legged locomotion capitalizes on a crab’s agility, stability, and efficiency and will allow Aerial to scramble over obstacles and crevices that traditional wheeled vehicles would find insurmountable.” iRobot Corporation

Future Combat Systems

The US Army is going through the agonizing process of “Transformation” from heavy forces structured for large scale conflict against conventional adversaries to those that are light, fast, flexible, and far more lethal. All types of robots are a big part of that transformation.

“Future Combat Systems (FCS) is catalyzing the Army’s transformation to the Objective Force. It will be a networked system-of-systems that includes manned and unmanned ground vehicles, along with various unmanned air vehicles. The goal is to develop Units of Action that have the lethality and survivability of an M1-based (Abrams tank) heavy force, but with the agility of today’s light forces.” DARPA Strategic Plan

In addition to a family of manned vehicles, FCS, as currently envisioned, will include four distinct types of ground robot platforms.

  • NLOS-LS (Non-Line-of-Sight – Launch System) is a roving robotic mortar carrier.
  • ARV (Armed Robotic Vehicle) is a hunter-killer heavy armored car with sophisticated sensors, guided missiles and a high velocity main gun.
  • MULE (Multifunction Utility/Logistics and Equipment) is actually several types of vehicles built on a common chassis. Depending on equipment and configuration, it can be a supply carrier, air assault weapons platform, countermine system, and even a autonomous ambulance named “Valkyrie” after the mythical Nordic creatures that flew fallen warriors straight to Valhalla.
  • SUGV (Small Unmanned Ground Vehicle) is the only one actually in service now, typified by MATILDA and TALON EOD robots that have been recently upgraded with remote teleoperated weapons platforms.
Deadly derringer. Don’t mess with this experimental version of Mesa Robotics’ MATILDA, awesomely armed with a pair of SMAW-D rocket launchers. This little EOD robot, combat proven in Afghanistan and Iraq, is now preparing to dramatically expand its mission capabilities. (Mesa Robotics)

FCS also includes four classes of unmanned air vehicles ranging from small model plane style recon flyers used at the platoon and company level, through larger fixed wing and rotary wing recon, to the potential for flying an Apache-type robot helicopter with air-to-ground and air-to-air attack capabilities

The 40 pound PackBot gets its name from being designed for carrying by one soldier if necessary as seen here, snugly riding in a MOLLE pack. Note the book sized controller strapped to the pack and the eyepiece television viewer on the helmet. (iRobot)

Lethality Components

With directed energy weaponry including lasers and focused microwaves developing at a high speed, it is now fashionable in future combat circles to talk about “lethality components” as opposed to the old term “guns” used by men and machines. Some other interesting new concepts include:

  • Electrothermal. “An electrothermal gun uses electrical energy to heat a propellant that is allowed to expand rapidly to create a force on the ordnance. The force is capable of accelerating a projectile to high speeds thermodynamically.” Federation of American Scientists
  • Magnetic. “It’s the fastest gun in the world,” says physicist Marcus Knudson, lead scientist on Sandia’s magnetic propulsion project. “At 20 kilometers per second… would send material from New York to Boston in half a minute.” Sandia National Laboratories News Release
  • Metal Storm. “Our electronic ballistics system (demonstrating a 40mm multi-tube array on the TALON robot) has no mechanical parts and provides a lightweight, compact weapon which carries a payload of sixteen shots, ten more than the existing alternative. The system is capable of variable rates of fire, selected and fired by remote control. We intend to undertake further development of the Metal Storm system with a view to increasing the payload to 48 shots.” Mike O’Dwyer, Director of Scientific Innovation, Metal Storm
  • Smart Munitions. These are already being widely used in the form of artillery shells and “smart bombs” like JDAM that ride beams from laser designators to impact with uncanny precision. So, why not more, smarter and smaller versions that don’t need a designator? “These smart munitions could be defensive or offensive, be vehicle-mounted on the various Future Combat Systems manned and unmanned vehicles, and/or be carried by the Objective Force Warrior or future warriors. Quick-reaction fire-and-forget miniature smart munitions would improve lethality against enemy vehicles and personnel….” US Army Space and Missile Defense Command


Death From Above

“DARPA is conducting three unmanned air combatant programs: the Unmanned Combat Air Vehicle (UCAV) with the Air Force, UCAV-N with the Navy, and the Unmanned Combat Armed Rotorcraft with the Army. These aircraft will be teamed with manned systems on the ground and in the air….” DARPA Strategic Plan

The Navy and Air Force UCAVs are basically unmanned fighter jets with most of the same characteristics and capabilities as the ones that human pilots are flying in now. The program is progressing quickly and early versions are taking off without human aid, navigating on their own, doing high-value recon, and releasing “smart” ordnance in flight.

As for the Unmanned Combat Armed Rotorcraft, this will be “an all-weather, highly autonomous and survivable unmanned rotorcraft fully integrated into the Army’s Objective Force combat maneuver force structure. Capable of autonomous mission planning while in flight, the UCAR will request guidance from a human operator only for tasking and final weapons authorization.” Boeing News Release

Man-in-the-Loop

DARPA recognizes that, as hard as it is oftentimes for people to work together, a lot of sober thought and hard work needs to go into optimizing man-machine teams of the near future. Studies are underway to analyze how humans act, think and communicate and how robots might be equipped to handle our very different levels of physical and mental competence.

Increasingly smart robots will be working with humans whose baseline intelligence has not measurably improved in the last thousand years. Undaunted, DARPA is pressing forward with some spooky initiatives that just may have a payoff in helping scared, exhausted and information-overloaded soldiers work smarter and hit harder on future battlefields.

  • Brain Boosters. “Our Augmented Cognition program looks to directly (but non-invasively) measure human cognitive load so that information may be presented to the warfighter or commander in a way that does not overload human cognition when mental processes are pressed to the limit, and that takes advantage of spare ‘processing power.’ This will make those working under high-pressure circumstances much more effective, and will fundamentally change the nature of the human-machine interface, finally creating interfaces that adapt to the user rather than the other way around.”DARPA Strategic Plan
  • Brain Machine Interface. Kicking augmented cognition up several notches, we find DARPA eagerly pursuing the eerie goal of making something happen just by thinking about it. “This program is finding ways to detect and directly decode signals in the brain so that thoughts can be turned into acts performed by a machine. The long-term Defense implications… are enormous; imagine U.S. warfighters that only need use the power of their thoughts to do things at great distance.” DARPA Strategic Plan

Command and control aren’t the only areas of human-robot interaction that DARPA is interested in. Improving the soldier’s comfort, stamina, load-lifting, distance-marching, lethality, communications, and survivability are urgent goals so that men can keep pace with their machines.

  • Bionic Man. “The overall goal of the Exoskeletons for Human Performance Augmentation (EHPA) Program is to develop devices and machines that will increase the speed, strength, and endurance of soldiers in combat environments. Projects will lead to self-powered, controlled and wearable exoskeletal devices and/or machines and demonstrations of their utility in military applications. Inclusion of exoskeleton technology into land-based operations could potentially increase the capabilities of the ground-based warfighter and radically alter the current military doctrine.”DARPA Defense Sciences Office
  • Institute for Soldier Nanotechnologies (ISN). A nanometer is one billionth of a meter, a length scale where the rules of classical physics don’t readily apply. ISN researchers aim to “…create a 21st century battlesuit that combines high-tech capabilities with light weight and comfort. Imagine a bulletproof jumpsuit, no thicker than ordinary spandex, that monitors health, eases injuries, communicates automatically, and maybe even lends superhuman abilities.” ISN


So, if all goes as planned over the next ten to twenty years the battlefields will swarm with armed robots of all types working for and with super soldiers. With luck this unstoppable team will be on the side of the good guys.

The internet has everything you need to know about Robotic Warriors of all types. Some good places to start are:

  • Association of Unmanned Vehicle Systems International: www.auvsi.org
  • Defense Advanced Research Projects Agency: www.darpa.mil
  • Department of Defense Joint Robotics Program: www.jointrobotics.com
  • Institute for Soldier Nanotechnologies: http://web.mit.edu/isn/
  • MACHINEBRAIN.COM: www.machinebrain.com
  • Sandia FIRE ANT in action: www.sandia.gov/isrc/fireant.html
This article first appeared in Small Arms Review V9N3 (December 2005)

Author

  • SAR Staff
    SAR Staff

    View all posts

Tags: 2005Aerial II ALUVAQM-34LArmed Robotic VehicleARVAutonomous Army AntsAutonomous Legged Underwater VehicleBionic ManCombat CrabsCyberbotsDARPADefense Advanced Research Projects AgencyDRAGON RUNNEREHPAElectrothermalExoskeletons for Human Performance AugmentationFCSFirebeeFuture Combat SystemsInstitute for Soldier NanotechnologiesiRobot CorporationISNKettering BugMagneticMATILDAMetal StormMULEMultifunction Utility/Logistics and EquipmentNLOS-LSNon-Line-of-Sight - Launch SystemPioneer UAVPREDATORRobert BruceRobot SentriesRobot WarriorsSandia’s Intelligent Systems & Robotics CenterSmall Unmanned Ground VehicleSmart MunitionsSmart Warfighter Array of Reconfigurable ModulesSparrow AIM-7 rocketsSUGVSWARMTALONV9N3
Previous Post

FEEDING THE TIGER: AMMUNITION BELTS FOR RUSSIAN MAXIM MACHINE GUNS

Next Post

GUIDE LAMP

Next Post
GUIDE LAMP

GUIDE LAMP

TRENDING STORIES

  • U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

    U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

    0 shares
    Share 0 Tweet 0
  • Recreational Use Of 40MM Grenade Launchers

    0 shares
    Share 0 Tweet 0
  • Customizing the Already Custom SIG P320 Spectre Comp

    0 shares
    Share 0 Tweet 0
  • Col. Rex Applegate: The Knife Designs of a Close-Combat Legend

    0 shares
    Share 0 Tweet 0
  • Firearm Review: Pioneer Arms Classic AK in 7.62×39

    0 shares
    Share 0 Tweet 0
  • Trending
  • Comments
  • Latest
U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

U.S. NAVY MK18 MOD O CUSTOM CLOSE QUARTER COMBAT WEAPON FOR THE SEAFARING SERVICE

Recreational Use Of 40MM Grenade Launchers

Recreational Use Of 40MM Grenade Launchers

SIG Spectre Comp with AXG Grip Module

Customizing the Already Custom SIG P320 Spectre Comp

Col. Rex Applegate: The Knife Designs of a Close-Combat Legend

Col. Rex Applegate: The Knife Designs of a Close-Combat Legend

New Review: V19N1

New Review: V23N3

SAR|Special

SAR|Special

The Grand Power Q100

The Grand Power Q100

A Fading Star: The star S135 Submachine Gun, That is

A Fading Star: The star S135 Submachine Gun, That is

The Luger Rifle

Where in the world is the Luger rifle?

Book Reviews: September 2016

BOOK REVIEW: Two Great MP40 Books 

Henk Visser Interview: SAR Talks Stoners, CETME, HK with One of the Founders of the Modern Small Arms Industry

Henk Visser Interview: SAR Talks Stoners, CETME, HK with One of the Founders of the Modern Small Arms Industry

The SCCY DVG-1—The Changer of Games

The SCCY DVG-1—The Changer of Games

QUICK LINKS

  • About Chipotle Publishing
  • About Small Arms Review
  • Advertise with Us
  • Write for Us

CONTACT DETAILS

  • Phone: +1 (702) 565-0746
  • E-mail: office@smallarmsreview.com
  • Web: www.chipotlepublishing.com
  • Chipotle Publishing, LLC 631 N. Stephanie St., No. 282, Henderson, NV 89014
Small Arms Review

FOLLOW US

  • Privacy Policy
  • Disclaimer

© 2022 Chipotle Publishing | All Rights Reserved

No Result
View All Result
  • Home
  • Articles
    • Guns & Parts
    • Suppressors
    • Optics & Thermals
    • Ammunition
    • Gear
    • News & Opinion
    • Columns
    • Museums & Factory Tours
    • ID Guides
    • Interviews
    • Event Coverage
    • Articles by Issue
      • Volume 1
      • Volume 2
      • Volume 3
      • Volume 4
      • Volume 5
      • Volume 6
      • Volume 7
      • Volume 8
      • Volume 9
      • Volume 10
      • Volume 11
      • Volume 12
      • Volume 13
      • Volume 14
      • Volume 15
      • Volume 16
      • Volume 17
      • Volume 18
      • Volume 19
      • Volume 20
      • Volume 21
      • Volume 22
      • Volume 23
      • Volume 24
  • The Archive
    • Search The Archive
  • Store
    • Books
    • Back Issues
    • Merchandise
  • Podcast
  • Newsletter
  • Events
  • FrankenGun Challenge
  • About
    • About Small Arms Review
    • About Chipotle Publishing
    • Contact Us
    • Other Publications
      • Small Arms Defense Journal

© 2022 Chipotle Publishing | All Rights Reserved

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.

Subscribe To Our Weekly Newsletter

Are you in the know?
Stay up to date with the latest articles.

Facebook-f Linkedin Instagram

Redirecting to External Website

You are leaving the Small Arms Review website and will be redirected to an external link in a 5 Seconds.
VISIT NOW!